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The purpose of this tutorial is to provide exposure to commonly implemented 
components in the Xilinx ISE environment.  Components we’ll look at include global 
clock buffers, tri-state buffers, and block RAM (BRAM).  A few notes on using timing 
constraints are also provided. 
 
Clock Buffers 
 Clock buffers are used to increase the fanout capacity of a clock signal, and to 
minimize skew.  They also help the synthesis tools identify which signals are global 
clocks in complex designs.  They are most easily instantiated directly as components. 
 -- From Xilinx’s Libraries Guide “lib.pdf” 
 -- Component Declaration for BUFG should be placed 
 -- after architecture statement but before begin keyword 
 component BUFG 
  port (O : out STD_ULOGIC; 
   I : in STD_ULOGIC); 
 end component; 
 
 -- Component Instantiation for BUFG should be placed 
 -- in architecture after the begin keyword 
  BUFG_INSTANCE_NAME : BUFG 
  port map (O => user_O, 
      I => user_I); 
 
 
Tri-state Buffers 

Frequently in a design (particularly in designs that manipulate large amounts of 
data), several computing modules may need access to the same data at different times.  
For instance, you may have an image processor.  Each pixel of the image is stored in 
RAM.  The processor has to fetch each pixel, perform some operation on it, and store the 
new value in the same RAM location.  Then, perhaps you want the data compressed, so a 
compressor grabs the post-processed data from RAM, encodes it, and outputs the final 
stream serially.  The image processor and the compressor need to access the same RAM, 
but not at exactly the same time.  Each needs independent control of the address and 
control lines. 

Tri-state buffers allow modules to control the same signals at different times 
without interfering with each other.  If each module were connected to the signals 
directly, those signals would have two (or more) drivers, and that would cause problems.  

Here is the VHDL code for a generic tri-state buffer:  
 
 
 
 
 
 

entity gen_tribuf is 
generic(width : positive); 
Port ( pass : in  STD_LOGIC; 
i : in  STD_LOGIC_VECTOR (width-1 downto 0); 
o : out  STD_LOGIC_VECTOR (width-1 downto 0)); 
end gen_tribuf; 
 
architecture Behavioral of gen_tribuf is 
constant hi_imp : STD_LOGIC_VECTOR(width-1 downto 0) := (others => 'Z'); 
begin 
o <= i when pass ='0' else hi_imp; 
end Behavioral; 



 
 

 
 
 By instantiating these between each module and the shared signals, a state 
machine or other control logic can manage the ‘pass’ signal so that only the correct 
module controls the shared signals at any time. 
 
Block RAM (BRAM) 
 Many modern FPGAs have two types of memory elements available.  Distributed 
RAM takes the form of flip-flops that are created within the general-purpose logic fabric 
of the chip.  This is good for storing small amounts of data, making registers, shift 
registers, etc.  Block RAM is dedicated, configurable memory with address, data, and 
control ports.  If your design stores and manipulates a lot of data, Block RAM (BRAM) is 
the way to go.  Otherwise, the synthesizer may try to generate enough storage out of the 
FPGA’s logic slices, which could cause you to run out of room for the logic portion of 
your design. 
 The BRAM in Xilinx’s FPGAs is fairly versatile.  For the Virtex-4, each block 
consists of 18 kbits, and can be configured in any aspect ratio from 16k single bits, 8k 2-
bit words, up to 512 36-bit words.  Also, blocks can be automatically chained together to 
form larger memories.  For example, by specifying a RAM with 1024 words that are 36 
bits each, the synthesis tools would connect two blocks together. 
 BRAM also supports dual-ports.  Each port has its own data in, data out, address 
bus, and clock, as well as EN and WE control lines.  The two ports can even vary in data 
word width. 
 To get the synthesizer to recognize that BRAM should be used instead of 
distributed RAM, you must use a particular entity declaration and architecture.  A simple 
example is shown here: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

entity my_ram is 
 port (  clka : in std_logic; 
   ena : in std_logic; 
   wea : in std_logic; 
   addra : in std_logic_vector(7 downto 0); 
   dia : in std_logic; 
   doa : out std_logic); 
end my_ram; 
 
architecture Behavioral of my_ram is 
type ram_type1 is array (255 downto 0) of std_logic; 
signal RAM1 : ram_type1; 
begin 
 process (clka) 
 begin 
  if (clka'event and clka = '1') then 
   if (ena = '1') then 
    if (wea = '1') then 
     RAM1(conv_integer(addra)) <= dia; 
    end if; 
    doa <= RAM1(conv_integer(addra)); 
   end if; 
  end if; 
 end process; 
  
end Behavioral; 



 
 
 
 
 
 
 
 The BRAM described above uses a single port, and consists of 256 single-bit 
entries.  The number of addresses is controlled simply by the address bus width, and by 
the array size of ram_type1.  Likewise, the word width is controlled by the data bus 
widths, and again in the element size of the type ram_type1.  Also note that this BRAM 
writes first, then places data on the output bus.  Read-then-write and no-change 
synchronizations are also supported.  Here is an example of a dual-port BRAM. 



 
 
 Other BRAM configurations, as well as code samples for many other useful 
synthesis constructs, can be found in ISE under Edit-> Language Template menu, in the 
VHDL->Synthesis Constructs -> Coding Examples folder.  More information about 
Virtex-4 BRAM resources can be found in the Virtex-4 User’s Guide. 
 
 
 

entity vector_ram is 
 port(clka : in std_logic; 
 clkb : in std_logic; 
 ena : in std_logic; 
 enb : in std_logic; 
 wea : in std_logic; 
 web : in std_logic; 
 addra : in std_logic_vector(8 downto 0); 
 addrb : in std_logic_vector(8 downto 0); 
 dia : in std_logic_vector(35 downto 0); 
 dib : in std_logic_vector(35 downto 0); 
 doa : out std_logic_vector(35 downto 0); 
 dob : out std_logic_vector(35 downto 0)); 
end vector_ram; 
 
architecture syn of vector_ram is 
 
type ram_type3 is array (0 to 511) of std_logic_vector(35 downto 0); 
shared variable RAM3 : ram_type3; 
begin 
 
 process (CLKA) 
 begin 
  if CLKA'event and CLKA = '1' then 
   if ENA = '1' then 
    if WEA = '1' then 
     RAM3(conv_integer(ADDRA)) := DIA; 
    end if; 
    DOA <= RAM3(conv_integer(ADDRA)); 
   end if; 
  end if; 
 end process; 
   
 process (CLKB) 
 begin 
  if CLKB'event and CLKB = '1' then 
   if ENB = '1' then 
    if WEB = '1' then 
     RAM3(conv_integer(ADDRB)) := DIB; 
    end if; 
    DOB <= RAM3(conv_integer(ADDRB)); 
   end if; 
  end if; 
 end process; 
end syn; 



Timing Constraints and Synthesis Effort 
 We often want to maximize the operating frequency of a design, or at least reach a 
minimum target speed.  While pipelining and parallel processing are two tools that help 
us with those tasks, maximum operating frequency is heavily dependent on how the place 
and route tools map a design onto the FPGA logic fabric.  There are two primary means 
for telling the tools what areas to focus on: timing constraints and synthesis effort. 
 Synthesis effort is a global effect, and is good to use if you have extra logic space 
available on the FPGA and want to squeeze more speed out of the design.  Alternatively, 
you can reduce the footprint of the design at the expense of speed.  By right-clicking on 
the Synthesize menu in the Processes window and selecting Properties, you can specify 
what optimization you’re after.  There are two properties to adjust: Optimization Goal 
and Optimization Effort.  Optimization Goal lets you specify whether you’re more 
worried about speed or area.  Optimization Effort tells the computer how much 
computing power you’re willing to throw at the problem.  Setting this to ‘High’ tells the 
computer that you’re willing to wait a while (sometimes a long while) for even more 
speed or less area.  Sometimes the effect is very small, and may not be worth the wait.  
However, changing the Optimization Goal can have a drastic impact on size versus 
speed. 
 Another synthesis option to consider is Resource Sharing (found by right-clicking 
on Synthesize, selecting Properties, and clicking on the HDL Options category, 2nd from 
bottom).  If resource sharing is selected, the synthesizer will allow logic functions to 
share common logic paths (for example, two separate adders may be allowed to share 
some adder circuitry).  Resources sharing usually results in slower performance, but 
saves area.  If speed is what you’re after, turn off Resource Sharing. 
 Specifying a timing constraint tells Place & Route what you’re timing 
requirements are for particular signal or path.  P&R will then spend extra effort looking 
for ways to place logic blocks and route signals to meet your goal.  This tool should be 
used carefully; if your constraints are too stringent, or if you specify too many 
constraints, P&R may not find a solution.  Be selective.  However, placing one or two 
constraints on global clock signals or long, vital data paths very often improves speed 
considerably. 
 Timing constraints are most easily added using the Constraints Editor, under User 
Constraints in the Processes window.  Here, you can enter the desired period for clock 
signals (under the Global tab), and desired setup and offset times for signals (under the 
Ports tab).  Simply enter your values in the editor, save, and close.  The next time you run 
Place & Route, your criteria will be taken into account. 


