
1

ECE 4170 (1)

Modeling Complex Behavior

© Sudhakar Yalamanchili, Georgia Institute of Technology

ECE 4170 (2)

Outline

• Abstraction and the Process Statement
– Concurrent processes and CSAs

• Process event behavior and signals vs. variables

• Timing behavior of processes

• Attributes

• Putting it together modeling state machines

2

ECE 4170 (3)

Raising the Level of Abstraction

R W

Data input

Data Output

Address

Memory Module

add R1, R2, R3
sub R3, R4, R5
move R7, R3...

Instruction Set Simulation

• Concurrent signal assignment statements can easily capture the
gate level behavior of digital systems

• Higher level digital components have more complex behaviors
– Input/output behavior not easily captured by concurrent

signal assignment statements
– Models utilize state information
– Incorporate data structures

• We need more powerful constructs

ECE 4170 (4)

Extending the Event Model

• Combinational logic input/output semantics
– Events on inputs causes re-computation
– Re-computation may lead to events on outputs

• Computation of the value and time of output events
can be a complex process

Description of a
Complex
Process

Sig1 <= …..
Sig2 <= …...

Input signals Output signals

3

ECE 4170 (5)

library IEEE;
use IEEE.std_logic_1164.all;
entity mux4 is
port (In0, In1, In2, In3: in std_logic_vector (7 downto 0);

Sel: in std_logic_vector(1 downto 0);
Z : out std_logic_vector (7 downto 0));

end entity mux4;

architecture behavioral-3 of mux4 is

process (Sel, In0, In1, In2, In3) is
variable Zout: std_logic;
begin

if (Sel = “00”) then Zout := In0;
elsif (Sel = “01”) then Zout := In1;
elsif (Sel = “10”) then Zout := In2;
else Zout:= In3;
end if;
Z <= Zout;

end process;

The Process Statement

Use of variables rather than signals

Variable Assignment

Sensitivity List

ECE 4170 (6)

The Process Construct

• Statements in a process are executed sequentially

• A process body is structured much like conventional C function
– Declaration and use of variables
– if-then, if-then-else, case, for and while constructs
– A process can contain signal assignment statements

• A process executes concurrently with other concurrent signal
assignment statements

• A process takes 0 seconds of simulated time to execute and
may schedule events in the future

• We can think of a process as a complex signal assignment
statement!

4

ECE 4170 (7)

Concurrent Processes: Full Adder

• Each of the components of the full adder can be
modeled using a process

• Processes execute concurrently
– In this sense they behave exactly like concurrent signal

assignment statements

• Processes communicate via signals

Half
Adder

Half
Adder

In1

In2

c_in

s1

s3

s2

sum

c_out

port
Model using processes

Internal signal

ECE 4170 (8)

Concurrent Processes: Full Adder

library IEEE;
use IEEE.std_logic_1164.all;

entity full_adder is
port (In1, c_in, In2: in std_logic;

sum, c_out: out std_logic);
end entity full_adder;

architecture behavioral of full_adder is
signal s1, s2, s3: std_logic;
constant delay:Time:= 5 ns;
begin

HA1: process (In1, In2) is
begin
s1 <= (In1 xor In2) after delay;
s3 <= (In1 and In2) after delay;
end process HA1;

HA2: process(s1,c_in) is
begin
sum <= (s1 xor c_in) after delay;
s2 <= (s1 and c_in) after delay;
end process HA2;

OR1: process (s2, s3) -- process
describing the two-input OR gate
begin
c_out <= (s2 or s3) after delay;
end process OR1;

end architecture behavioral;

5

ECE 4170 (9)

Concurrent Processes: Half Adder

library IEEE;
use IEEE.std_logic_1164.all;

entity half_adder is
port (a, b : in std_logic;
sum, carry : out std_logic);
end entity half_adder;

architecture behavior of half_adder is
begin

sum_proc: process(a,b) is
begin
if (a = b) then
sum <= ‘0’ after 5 ns;
else
sum <= (a or b) after 5 ns;
end if;
end process;

carry_proc: process (a,b) is
begin
case a is
when ‘0’ =>
carry <= a after 5 ns;
when ‘1’ =>
carry <= b after 5 ns;
when others =>
carry <= ‘X’ after 5 ns;
end case;
end process carry_proc;

end architecture behavior;

ECE 4170 (10)

Processes + CSAs

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity memory is
port (address, write_data: in std_logic_vector (7 downto 0);
MemWrite, MemRead, clk, reset: in std_logic;
read_data: out std_logic_vector (7 downto 0));
end entity memory;

architecture behavioral of memory is
signal dmem0,dmem1,dmem2,dmem3: std_logic_vector (7 downto 0);
begin
mem_proc: process (clk) is
-- process body
end process mem_proc;
-- read operation CSA
end architecture behavioral;

MemRead MemWrite

address

write_data

read_data

clk reset

6

ECE 4170 (11)

Process + CSAs: The Write Process

mem_proc: process (clk) is
begin
if (rising_edge(clk)) then -- wait until next clock edge
if reset = ‘1’ then -- initialize values on reset
dmem0 <= x”00”; -- memory locations are initialized to
dmem1 <= x”11”;-- some random values
dmem2 <= x”22”;
dmem3 <= x”33”;
elsif MemWrite = ‘1’ then -- if not reset then check for memory write
case address (1 downto 0) is
when “00” => dmem0 <= write_data;
when “01” => dmem1 <= write_data;
when “10” => dmem2 <= write_data;
when “11” => dmem3 <= write_data;
when others => dmem0 <= x“ff”;
end case;
end if;
end if;
end process mem_proc;

ECE 4170 (12)

Process + CSAs: The Read Statement

• A process can be viewed as single concurrent signal
assignment statement
– The external behavior is the same as a CSA
– Processes describe more complex event generation

behavior

• Processes execute concurrently in simulated time
with other CSAs

- memory read is implemented with a conditional signal assignment
read_data <= dmem0 when address (1 downto 0) = “00” and MemRead = ‘1’ else
dmem1 when address (1 downto 0) = “01” and MemRead = ‘1’ else
dmem2 when address (1 downto 0) = “10” and MemRead = ‘1’ else
dmem3 when address (1 downto 0) = “11” and MemRead = ‘1’ else
x”00”;

7

ECE 4170 (13)

Iteration

architecture behavioral of mult32 is
constant module_delay: Time:= 10 ns;
begin
mult_process: process(multiplicand,multiplier) is
variable product_register : std_logic_vector (63 downto 0) := X”0000000000000000”;
variable multiplicand_register : std_logic_vector (31 downto 0):= X”00000000”;

begin
multiplicand_register := multiplicand;
product_register(63 downto 0) := X”00000000” & multiplier;
for index in 1 to 32 loop
if product_register(0) = ‘1’ then
product_register(63 downto 32) := product_register (63 downto 32) +

multiplicand_register(31 downto 0);
end if;

-- perform a right shift with zero fill
product_register (63 downto 0) := ‘0’ & product_register (63 downto 1);
end loop;
-- write result to output port
product <= product_register after module_delay;

end process mult_process;

Concatenation operator

Example: A Simple Multiplier

ECE 4170 (14)

Iteration

• for loop index
– Implicit declaration via “use”

• Scope is local to the loop
– Cannot be used elsewhere in model

• while loop
– Boolean expression for termination

while j < 32 loop
...
...
j := j+1;
end loop;

8

ECE 4170 (15)

Outline

• Abstraction and the Process Statement

• Process event behavior and signals vs. variables

• Timing behavior of processes

• Attributes

• Putting it together modeling state machines

ECE 4170 (16)

Process Behavior
• All processes are executed once at start-up
• Thereafter dependencies between signal values and events on

these signals determine process initiation
• One can view processes as components with an

interface/function
• Note that signals behave differently from variables!

library IEEE;
use IEEE.std_logic_1164.all;

entity sig_var is
port (x, y, z: in std_logic;
res1, res2: out std_logic);
end entity sig_var;

architecture behavior of sig_var is
signal sig_s1, sig_s2: std_logic;
begin
proc1: process (x, y, z) is -- Process 1
variable var_s1, var_s2: std_logic;

begin
L1: var_s1 := x and y;
L2: var_s2 := var_s1 xor z;
L3: res1 <= var_s1 nand var_s2;
end process;

proc2: process (x, y, z) -- Process 2
begin
L1: sig_s1 <= x and y;
L2: sig_s2 <= sig_s1 xor z;
L3: res2 <= sig_s1 nand sig_s2;
end process;

end architecture behavior;

9

ECE 4170 (17)

Variables vs. Signals: Example

proc1: process (x, y, z) is -- Process 1
variable var_s1, var_s2: std_logic;
begin
L1: var_s1 := x and y;
L2: var_s2 := var_s1 xor z;
L3: res1 <= var_s1 nand var_s2;
end process;

proc2: process (x, y, z) -- Process 2
begin
L1: sig_s1 <= x and y;
L2: sig_s2 <= sig_s1 xor z;
L3: res2 <= sig_s1 nand sig_s2;
end process;

variables
signals

• Distinction between the use of variables vs. signals
– Computing values vs. computing time-value pairs
– Remember event ordering and delta delays!

ECE 4170 (18)

Variables vs. Signals: Example

variables signals

• Writing processes
– Use signals to represent corresponding hardware entities
– Use variables when computing (future) values of signals

This transition is
determined by
process initiation

10

ECE 4170 (19)

Simulation and Signals

Process Foo

s2 Process Foo

current signal
values

future signal
values

s1

s7

s2

s1

s7

s2

s1

s7

s2

s1

s7

update

• Process is initiated
• Compute new signal values using

current signal values
– Use the value of the signal

at process initiation
– Ignore textual

dependencies between
signals

• Process state (signal values) are
updated

• Process now waits for an event
on its sensitivity list

• When initiated, process execution
references these new signal
values

reference compute

Execute Process

Update Process State

Ready to execute process

ECE 4170 (20)

Using Signals in a Process

• Entity signals are visible in a process
• Processes can encapsulate variable and signal

assignment statements
• What is the effect on the model behavior between

dataflow and process models?
• Actual waveforms will depend on how initialization is

handled/performed

In1

In2

z

s1

s2

s3

s4

11

ECE 4170 (21)

Using Signals in a Process

library IEEE;
use IEEE.std_logic_1164.all;
entity combinational is
port (In1, In2: in std_logic;
z : out std_logic);
end entity combinational;
signal s1, s2, s3, s4: std_logic:=

‘0’;
begin
s1 <= not In1;
s2 <= not In2;
s3 <= not (s1 and In2);
s4 <= not (s2 and In1);
z <= not (s3 and s4);
end architecture behavior;

library IEEE;
use IEEE.std_logic_1164.all;
entity combinational is
port (In1, In2: in std_logic;
z : out std_logic);
end entity combinational;
signal s1, s2, s3, s4: std_logic:= ‘0’;
begin
sig_in_proc: process (In1, In2) is
begin
s1 <= not In1;
s2 <= not In2;
s3 <= not (s1 and In2);
s4 <= not (s2 and In1);
z <= not (s3 and s4);
end process sig_in_proc;
end architecture behavior;

Encapsulate in a
process

ECE 4170 (22)

Using Signals in a Process (cont.)
IN1

IN2

Z

S1

S2

S3

S4

10 20 30 40 50 60 70

IN1

IN2

Z

S1

S2

S3

S4

10 20 30 40 50 60 70

Using concurrent signal assignment statements Using signal assignment statements within a process

12

ECE 4170 (23)

Outline

• Abstraction and the Process Statement
– Concurrent processes and CSAs

• Process event behavior and signals vs. variables

• Timing behavior of processes

• Attributes

• Putting it together modeling state machines

ECE 4170 (24)

The Wait Statement

• The wait statements can describe synchronous or asynchronous
timing operations

library IEEE;
use IEEE.std_logic_1164.all;
entity dff is
port (D, Clk : in std_logic;
Q, Qbar : out std_logic);
end entity dff;
architecture behavioral of dff is
begin
output: process is
begin
wait until (Clk’event and Clk = ‘1’); -- wait for rising edge
Q <= D after 5 ns;
Qbar <= not D after 5 ns;
end process output;
end architecture behavioral;

signifies a value change on signal clk

13

ECE 4170 (25)

The Wait Statement: Waveform
Generation

reset

phi1

phi2

10 20 30 40 50 60
Time (ns)

events specified
by the reset
and clock
processes

library IEEE;
use IEEE.std_logic_1164.all;
entity two_phase is
port(phi1, phi2, reset: out std_logic);
end entity two_phase;
architecture behavioral of two_phase is
begin
rproc: reset <= ‘1’, ‘0’ after 10 ns;

clock_process: process is
begin
phi1 <= ‘1’, ‘0’ after 10 ns;
phi2 <= ‘0’, ‘1’ after 12 ns, ‘0’ after
18 ns;
wait for 20 ns;
end process clock_process;
end architecture behavioral;

• Note the “perpetual” behavior of processes

ECE 4170 (26)

Wait Statement: Asynchronous Inputs
library IEEE; use IEEE.std_logic_1164.all;
entity asynch_dff is
port (R, S, D, Clk: in std_logic;
Q, Qbar: out std_logic);
end entity asynch_dff;
architecture behavioral of asynch_dff is
begin
output: process (R, S, Clk) is
begin
if (R = ‘0’) then
Q <= ‘0’ after 5 ns;
Qbar <= ‘1’ after 5 ns;
elsif S = ‘0’ then
Q <= ‘1’ after 5 ns;
Qbar <= ‘0’ after 5 ns;
elsif (rising_edge(Clk)) then
Q<= D after 5 ns;
Qbar <= (not D) after 5 ns;
end if;
end process output;
end architecture behavioral;

implied ordering provides
asynchronous set
reset

execute on event on any signal

14

ECE 4170 (27)

The Wait Statement

• A process can have multiple wait statements

• A process cannot have both a wait statement and a sensitivity
list (it should have one or the other): why?

• wait statements provide explicit control over suspension and
resumption of processes
– Representation of both synchronous and asynchronous events in a

digital systems

ECE 4170 (28)

Process Scheduling

• All processes execute at least once @time 0
– Events placed on all signals sensitivity list fires
– Processes with no sensitivity list execute at least once

• Careful with processes with no sensitivity lists
– With no wait statements may enter infinite loop simulator

dependent
– use for initialization

15

ECE 4170 (29)

Signal Assignment Rules

• When a time-value pair for a signal is placed on the
time queue, all later time-value pairs are removed

-- Example 1
…
…

signal sig_1 : std_logic := 0;
begin
example: process

begin
sig_1<= '1' after 3 ns;
sig_1 <= 'Z' after 4 ns;

wait for 10 ns;
end process example;

-- Example 2
…
…

signal sig_1 : std_logic := 0;
begin
example: process

begin
sig_1 <= 'Z' after 4 ns;
sig_1<= '1' after 3 ns;

wait for 10 ns;
end process example;

ECE 4170 (30)

Outline

• Abstraction and the Process Statement
– Concurrent processes and CSAs

• Process event behavior and signals vs. variables

• Timing behavior of processes

• Attributes

• Putting it together modeling state machines

16

ECE 4170 (31)

Attributes

• What types of information about this signal are useful?
– Occurrence of an event
– Elapsed time since last event
– Previous value, i.e., prior to the last event

value-time pair

• Data can be obtained about VHDL objects such as types, arrays
and signals.

object’ attribute

• Example: consider the implementation of a signal

driver

ECE 4170 (32)

Classes of Attributes

• Value attributes
– returns a constant value

• Function attributes
– invokes a function that returns a value

• Signal attributes
– creates a new signal

• Type Attributes
– Supports queries about the type of VHDL objects

• Range attributes
– returns a range

17

ECE 4170 (33)

Value Attributes

• Return a constant value
– type statetype is (state0, state1, state2 state3);

• state_type’left = state0
• state_type’right = state3

• Examples

returns the number of elements in the array
array_name

array_name’length
returns the lowest value of type_name in its rangetype_name’low
returns the highest value of type_name in its rangetype_name’high

returns the right most value of type_name in its
defined range

type_name’right

returns the left most value of type_name in its
defined range

type_name’left
ValueValue attribute

ECE 4170 (34)

Example

• The signal state is an enumerated type
– type statetype is (state0, state1, state3, state4);

• signal state:statetype:= statetype’left;

clk_process: process
begin
wait until (clk’event and clk = ‘1’);
if reset = ‘1’ then
state <= statetype’left;
else state <= next_state;
end if;
end process clk_process;

18

ECE 4170 (35)

Function Attributes

• Use of attributes invokes a function call which returns a value
– if (Clk’event and Clk = ‘1’)

• function call
• Examples: function signal attributes

Return the previous value of this signal signal_name’last_value
Return the time since the signal was last activesignal_name’last_active

Return the time since the last event on this signalsignal_name’last_event

Return a Boolean value signifying an assignment
made to this signal. This assignment may not be a

new value.

signal_name’active

Return a Boolean value signifying a change in
value on this signal

signal_name’event
FunctionFunction attribute

ECE 4170 (36)

Signal Attributes

• Creates a new “implicit” signal

True when event has not occurred on
signal_name for T units of time

signal_name’stable(T)

True when signal_name has been quiet
for T units of time

signal_name’quiet(T)

Signal whose value toggles when
signal_name is active

signal_name’transaction
Signal delayed by T units of timesignal_name’delayed(T)

Implicit SignalSignal attribute

• Internal signals are useful modeling tools

19

ECE 4170 (37)

Signal Attributes: Example

architecture behavioral of attributes is
begin

outdelayed <= data'delayed(5 ns);
outtransaction <= data'transaction;

end attributes;

These are real (in simulation) signals and
can be used elsewhere in the model

Re-appearance of delta delays

ECE 4170 (38)

Examples

• Detecting edges
– Edge triggering

• Measuring time to last event
– Detecting inter-event times on a signal

• Careful about detection time to last event on a signal!
– Creating delta-delayed signals

– Detecting setup/hold time violations
• Difference between time of last event on a signal and current

clock transition

20

ECE 4170 (39)

Function Attributes (cont.)

• Function array attributes

• type mem_array is array(0 to 7) of bit_vector(31 downto 0)
– mem_array’left = 0
– mem_array’right = 7
– mem_array’length = 8 (value kind attribute)

returns the lower bound of the index rangearray_name’low
returns the upper bound of the index rangearray_name’high

returns the right bound of the index rangearray_name’right
returns the left bound of the index rangearray_name’left

FunctionFunction attribute

ECE 4170 (40)

Range Attributes

for i in value_array’range loop
...
my_var := value_array(i);
...
end loop;

•Makes it easy to write loops

•Returns the index range of a constrained array

21

ECE 4170 (41)

Outline

• Abstraction and the Process Statement
– Concurrent processes and CSAs

• Process event behavior and signals vs. variables

• Timing behavior of processes

• Attributes

• Putting it together modeling state machines

ECE 4170 (42)

State Machines

• Basic components
– Combinational component: output function and next state

function
– Sequential component

• Natural process-based implementation

Combinational
logicInputs

Outputs

State

Clk

Next state

s0 s1 0/11/0

0/1

1/0

22

ECE 4170 (43)

Example: State Machine

library IEEE;
use IEEE.std_logic_1164.all;
entity state_machine is
port(reset, clk, x : in std_logic;
z : out std_logic);
end entity state_machine;
architecture behavioral of state_machine is
type statetype is (state0, state1);
signal state, next_state : statetype := state0;
begin
comb_process: process (state, x) is
begin
--- process description here
end process comb_process;
clk_process: process is
begin
-- process description here
end process clk_process;
end architectural behavioral;

ECE 4170 (44)

Example: Output and Next State Functions

•Combination of the next state and output functions

comb_process: process (state, x) is
begin
case state is -- depending upon the current state
when state0 => -- set output signals and next state
if x = ‘0’ then
next_state <= state1;
z <= ‘1’;
else next_state <= state0;
z <= ‘0’;
end if;
when state1 =>
if x = ‘1’ then
next_state <= state0;
z <= ‘0’;
else next_state <= state1;
z <= ‘1’;
end if;
end case;
end process comb_process;

23

ECE 4170 (45)

Example: Clock Process

• Use of asynchronous reset to initialize into a known state

clk_process: process is
begin
wait until (clk’event and clk = ‘1’); -- wait until the
rising edge
if reset = ‘1’ then -- check for reset and initialize
state
state <= statetype’left;
else state <= next_state;
end if;
end process clk_process;
end behavioral;

ECE 4170 (46)

Summary

• Processes
– variables and sequential statements
– if-then, if-then-else, case, while, for
– concurrent processes
– sensitivity list

• The Wait statement
– wait until, wait for, wait on

• Attributes
• Modeling State machines

wait on ReceiveData’transaction
if ReceiveData’delayed = ReceiveData then
..

