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Outline

• Abstraction and the Process Statement
– Concurrent processes and CSAs

• Process event behavior and signals vs. variables

• Timing behavior of processes

• Attributes

• Putting it together modeling state machines
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Raising the Level of Abstraction

R W

Data input

Data Output

Address

Memory Module

add R1, R2, R3
sub R3, R4, R5
move R7, R3...

Instruction Set Simulation

• Concurrent signal assignment statements can easily capture the 
gate level behavior of digital systems 

• Higher level digital components have more complex behaviors 
– Input/output behavior not easily captured by concurrent 

signal  assignment statements
– Models utilize state information 
– Incorporate data structures

• We need more powerful constructs
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Extending the Event Model

• Combinational logic input/output semantics
– Events on inputs causes re-computation
– Re-computation may lead to events on outputs

• Computation of the value and time of output events 
can be a complex process

Description of a 
Complex 
Process

Sig1 <= …..
Sig2 <= …...

Input signals Output signals
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library IEEE;
use IEEE.std_logic_1164.all;
entity mux4 is
port (In0, In1, In2, In3: in std_logic_vector (7 downto 0);

Sel: in std_logic_vector(1 downto 0);
Z : out std_logic_vector (7 downto 0));

end entity mux4;

architecture behavioral-3 of mux4 is

process (Sel, In0, In1, In2, In3) is
variable Zout: std_logic;
begin

if (Sel = “00”) then Zout := In0;
elsif (Sel = “01”) then Zout := In1;
elsif (Sel = “10”) then Zout := In2;
else Zout:= In3;
end if;
Z <= Zout;

end process;

The Process Statement

Use of variables rather than signals

Variable Assignment

Sensitivity List
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The Process Construct

• Statements in a process are executed sequentially

• A process body is structured much like conventional C function
– Declaration and use of variables
– if-then, if-then-else, case, for and while constructs
– A process can contain signal assignment statements

• A process executes concurrently with other concurrent signal 
assignment statements

• A process takes 0 seconds of simulated time to execute and 
may schedule events in the future

• We can think of a process as a complex signal assignment 
statement!
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Concurrent Processes: Full Adder

• Each of the components of the full adder can be 
modeled using a process

• Processes execute concurrently
– In this sense they behave exactly like concurrent signal 

assignment statements

• Processes communicate via signals

Half 
Adder

Half 
Adder

In1

In2

c_in

s1

s3

s2

sum

c_out

port
Model using processes

Internal signal
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Concurrent Processes: Full Adder

library IEEE;
use IEEE.std_logic_1164.all;

entity full_adder is
port (In1, c_in, In2: in std_logic;

sum, c_out: out std_logic);
end entity full_adder;

architecture behavioral of full_adder is
signal s1, s2, s3: std_logic;
constant delay:Time:= 5 ns;
begin

HA1: process (In1, In2) is
begin
s1 <= (In1 xor In2) after delay;
s3 <= (In1 and In2) after delay;
end process HA1;

HA2: process(s1,c_in) is
begin
sum <= (s1 xor c_in) after delay;
s2 <= (s1 and c_in) after delay;
end process HA2;

OR1: process (s2, s3) -- process
describing the two-input OR gate
begin
c_out <= (s2 or s3) after delay;
end process OR1;

end architecture behavioral;
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Concurrent Processes: Half Adder

library IEEE;
use IEEE.std_logic_1164.all;

entity half_adder is
port (a, b : in std_logic;
sum, carry : out std_logic);
end entity half_adder;

architecture behavior of half_adder is
begin

sum_proc: process(a,b) is
begin
if (a = b) then
sum <= ‘0’ after 5 ns;
else
sum <= (a or b) after 5 ns;
end if;
end process;

carry_proc: process (a,b) is
begin
case a is
when ‘0’ =>
carry <= a after 5 ns;
when ‘1’ =>
carry <= b after 5 ns;
when others =>
carry <= ‘X’ after 5 ns;
end case;
end process carry_proc;

end architecture behavior;
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Processes + CSAs

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity memory is
port (address, write_data: in std_logic_vector (7 downto 0);
MemWrite, MemRead, clk, reset: in std_logic;
read_data: out std_logic_vector (7 downto 0));
end entity memory;

architecture behavioral of memory is
signal dmem0,dmem1,dmem2,dmem3: std_logic_vector (7 downto 0);
begin
mem_proc: process (clk) is
-- process body
end process mem_proc;
-- read operation CSA
end architecture behavioral;

MemRead MemWrite

address

write_data

read_data

clk reset
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Process + CSAs: The Write Process

mem_proc: process (clk) is
begin
if (rising_edge(clk)) then -- wait until next clock edge
if reset = ‘1’ then -- initialize values on reset
dmem0 <= x”00”; -- memory locations are initialized to
dmem1 <= x”11”;-- some random values
dmem2 <= x”22”;
dmem3 <= x”33”;
elsif MemWrite = ‘1’ then -- if not reset then check for memory write
case address (1 downto 0) is
when “00” => dmem0 <= write_data;
when “01” => dmem1 <= write_data;
when “10” => dmem2 <= write_data;
when “11” => dmem3 <= write_data;
when others => dmem0 <= x“ff”;
end case;
end if;
end if;
end process mem_proc;
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Process + CSAs: The Read Statement

• A process can be viewed as single concurrent signal 
assignment statement
– The external behavior is the same as a CSA
– Processes describe more complex event generation 

behavior 

• Processes execute concurrently in simulated time 
with other CSAs

- memory read is implemented with a conditional signal assignment
read_data <= dmem0 when address (1 downto 0) = “00” and MemRead = ‘1’ else
dmem1 when address (1 downto 0) = “01” and MemRead = ‘1’ else
dmem2 when address (1 downto 0) = “10” and MemRead = ‘1’ else
dmem3 when address (1 downto 0) = “11” and MemRead = ‘1’ else
x”00”;
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Iteration

architecture behavioral of mult32 is
constant module_delay: Time:= 10 ns; 
begin
mult_process: process(multiplicand,multiplier) is
variable product_register : std_logic_vector (63 downto 0) := X”0000000000000000”;
variable multiplicand_register : std_logic_vector (31 downto 0):= X”00000000”;

begin
multiplicand_register := multiplicand;
product_register(63 downto 0) := X”00000000” & multiplier;
for index in 1 to 32 loop
if product_register(0) = ‘1’ then
product_register(63 downto 32) := product_register (63 downto 32) + 

multiplicand_register(31 downto 0);
end if;

-- perform a right shift with zero fill 
product_register (63 downto 0) := ‘0’ & product_register (63 downto 1);
end loop;
-- write result to output port
product <= product_register after module_delay;

end process mult_process;

Concatenation operator

Example: A Simple Multiplier
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Iteration

• for loop index
– Implicit declaration via “use”

• Scope is local to the loop
– Cannot be used elsewhere in model

• while loop
– Boolean expression for termination

while j < 32 loop
...
...
j := j+1;
end loop;
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Outline

• Abstraction and the Process Statement

• Process event behavior and signals vs. variables

• Timing behavior of processes

• Attributes

• Putting it together modeling state machines
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Process Behavior
• All processes are executed once at start-up
• Thereafter dependencies between signal values and events on 

these signals determine process initiation
• One can view processes as components with an 

interface/function
• Note that signals behave differently from variables!

library IEEE;
use IEEE.std_logic_1164.all;

entity sig_var is
port (x, y, z: in std_logic;
res1, res2: out std_logic);
end entity sig_var;

architecture behavior of sig_var is
signal sig_s1, sig_s2: std_logic;
begin
proc1: process (x, y, z) is -- Process 1
variable var_s1, var_s2: std_logic;

begin
L1: var_s1 := x and y;
L2: var_s2 := var_s1 xor z;
L3: res1 <= var_s1 nand var_s2;
end process;

proc2: process (x, y, z) -- Process 2
begin
L1: sig_s1 <= x and y;
L2: sig_s2 <= sig_s1 xor z;
L3: res2 <= sig_s1 nand sig_s2;
end process;

end architecture behavior;
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Variables vs. Signals: Example

proc1: process (x, y, z) is -- Process 1
variable var_s1, var_s2: std_logic;
begin
L1: var_s1 := x and y;
L2: var_s2 := var_s1 xor z;
L3: res1 <= var_s1 nand var_s2;
end process;

proc2: process (x, y, z) -- Process 2
begin
L1: sig_s1 <= x and y;
L2: sig_s2 <= sig_s1 xor z;
L3: res2 <= sig_s1 nand sig_s2;
end process;

variables
signals

• Distinction between the use of variables vs. signals
– Computing values vs. computing time-value pairs
– Remember event  ordering and delta delays!
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Variables vs. Signals: Example

variables signals

• Writing processes
– Use signals to represent corresponding hardware entities
– Use variables when computing (future)  values of signals

This transition is 
determined by 
process initiation
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Simulation and Signals

Process Foo

s2 Process Foo

current signal 
values

future signal 
values

s1

s7

s2

s1

s7

s2

s1

s7

s2

s1

s7

update

• Process is initiated
• Compute new signal values using 

current signal values
– Use the value of the signal 

at process initiation
– Ignore textual 

dependencies between 
signals

• Process state (signal values) are 
updated

• Process now waits for an event 
on its sensitivity list

• When initiated, process execution 
references these new signal 
values

reference compute

Execute Process

Update Process State

Ready to execute process
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Using Signals in a Process

• Entity signals are visible in a process
• Processes can encapsulate variable and signal 

assignment  statements
• What is the effect on the model behavior between 

dataflow and process models?
• Actual waveforms will depend on how initialization is 

handled/performed

In1

In2

z

s1

s2

s3

s4
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Using Signals in a Process

library IEEE;
use IEEE.std_logic_1164.all;
entity combinational is
port (In1, In2: in std_logic;
z : out std_logic);
end entity combinational;
signal s1, s2, s3, s4: std_logic:= 

‘0’;
begin
s1 <= not In1;
s2 <= not In2;
s3 <= not (s1 and In2);
s4 <= not (s2 and In1);
z <= not (s3 and s4);
end architecture behavior;

library IEEE;
use IEEE.std_logic_1164.all;
entity combinational is
port (In1, In2: in std_logic;
z : out std_logic);
end entity combinational;
signal s1, s2, s3, s4: std_logic:= ‘0’;
begin
sig_in_proc: process (In1, In2) is 
begin
s1 <= not In1;
s2 <= not In2;
s3 <= not (s1 and In2);
s4 <= not (s2 and In1);
z <= not (s3 and s4);
end process sig_in_proc;
end architecture behavior;

Encapsulate in a 
process
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Using Signals in a Process (cont.)
IN1

IN2

Z

S1

S2

S3

S4

10 20 30 40 50 60 70

IN1

IN2

Z

S1

S2

S3

S4

10 20 30 40 50 60 70

Using concurrent signal assignment statements Using signal assignment statements within a process
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Outline

• Abstraction and the Process Statement
– Concurrent processes and CSAs

• Process event behavior and signals vs. variables

• Timing behavior of processes

• Attributes

• Putting it together modeling state machines
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The Wait Statement

• The wait statements can describe synchronous or asynchronous 
timing operations

library IEEE;
use IEEE.std_logic_1164.all;
entity dff is
port (D, Clk : in std_logic;
Q, Qbar : out std_logic);
end entity dff;
architecture behavioral of dff is
begin
output: process is
begin
wait until (Clk’event and Clk = ‘1’); -- wait for rising edge
Q <= D after 5 ns;
Qbar <= not D after 5 ns;
end process output;
end architecture behavioral;

signifies a value change on signal clk
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The Wait Statement: Waveform 
Generation

reset

phi1

phi2

10 20 30 40 50 60
Time (ns)

events specified
by the reset
and clock 
processes

library IEEE;
use IEEE.std_logic_1164.all;
entity two_phase is
port(phi1, phi2, reset: out std_logic);
end entity two_phase;
architecture behavioral of two_phase is
begin
rproc: reset <= ‘1’, ‘0’ after 10 ns;

clock_process: process is
begin
phi1 <= ‘1’, ‘0’ after 10 ns;
phi2 <= ‘0’, ‘1’ after 12 ns, ‘0’ after
18 ns;
wait for 20 ns;
end process clock_process;
end architecture behavioral;

• Note the “perpetual” behavior of processes
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Wait Statement: Asynchronous Inputs
library IEEE; use IEEE.std_logic_1164.all;
entity asynch_dff is
port (R, S, D, Clk: in std_logic;
Q, Qbar: out std_logic);
end entity asynch_dff;
architecture behavioral of asynch_dff is
begin
output: process (R, S, Clk) is
begin
if (R = ‘0’) then
Q <= ‘0’ after 5 ns;
Qbar <= ‘1’ after 5 ns;
elsif S = ‘0’ then
Q <= ‘1’ after 5 ns;
Qbar <= ‘0’ after 5 ns;
elsif (rising_edge(Clk)) then
Q<= D after 5 ns;
Qbar <= (not D) after 5 ns;
end if;
end process output;
end architecture behavioral;

implied ordering provides
asynchronous set
reset

execute on event on any signal
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The Wait Statement

• A process can have multiple wait statements

• A process cannot have both a wait statement and a sensitivity 
list (it should have one or the other): why?

• wait statements provide explicit control over suspension and 
resumption of processes
– Representation of both synchronous and asynchronous events in a 

digital systems
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Process Scheduling

• All processes execute at least once @time 0
– Events placed on all signals sensitivity list fires
– Processes with no sensitivity list execute at least once

• Careful with processes with no sensitivity lists
– With no wait statements may enter infinite loop simulator 

dependent
– use for initialization
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Signal Assignment Rules

• When a time-value pair for a signal is placed on the 
time queue, all later time-value pairs are removed

-- Example 1
…
…

signal sig_1 : std_logic := 0;
begin
example: process

begin
sig_1<= '1' after 3 ns;
sig_1 <= 'Z' after 4 ns;

wait for 10 ns;
end process example;

-- Example 2
…
…

signal sig_1 : std_logic := 0;
begin
example: process

begin
sig_1 <= 'Z' after 4 ns; 
sig_1<= '1' after 3 ns;

wait for 10 ns;
end process example;
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Outline

• Abstraction and the Process Statement
– Concurrent processes and CSAs

• Process event behavior and signals vs. variables

• Timing behavior of processes

• Attributes

• Putting it together modeling state machines
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Attributes 

• What types of information about this signal are useful?
– Occurrence of an event
– Elapsed time since last event
– Previous value, i.e., prior to the last event

value-time pair

• Data can be obtained about VHDL objects such as types, arrays 
and signals. 

object’ attribute

• Example: consider the implementation of a signal 

driver
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Classes of Attributes

• Value attributes
– returns a constant value

• Function attributes
– invokes a function that returns a value

• Signal attributes
– creates a new signal

• Type Attributes
– Supports queries about the type of VHDL objects

• Range attributes
– returns a range



17

ECE 4170 (33)

Value Attributes

• Return a constant value 
– type statetype is (state0, state1, state2 state3);

• state_type’left = state0
• state_type’right = state3

• Examples

returns the number of elements in the array 
array_name

array_name’length
returns the lowest value of type_name in its rangetype_name’low
returns the highest value of type_name in its rangetype_name’high

returns the right most value of type_name in its 
defined range

type_name’right

returns the left most value of type_name in its 
defined range

type_name’left
ValueValue attribute
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Example 

• The signal state is an enumerated type
– type statetype is (state0, state1, state3, state4);

• signal state:statetype:= statetype’left;

clk_process: process
begin
wait until (clk’event and clk = ‘1’);
if reset = ‘1’ then
state <= statetype’left;
else state <= next_state;
end if;
end process clk_process;
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Function Attributes

• Use of attributes invokes a function call which returns a value 
– if (Clk’event and Clk = ‘1’)

• function call
• Examples: function signal attributes

Return the previous value of this signal signal_name’last_value
Return the time since the signal was last activesignal_name’last_active

Return the time since the last event on this signalsignal_name’last_event

Return a Boolean value signifying an assignment 
made to this signal. This assignment may not be a 

new value.

signal_name’active

Return a Boolean value signifying a change in 
value on this signal

signal_name’event
FunctionFunction attribute
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Signal Attributes

• Creates a new “implicit” signal

True when event has not occurred on 
signal_name for T units of time

signal_name’stable(T)

True when signal_name has been quiet 
for T units of time

signal_name’quiet(T)

Signal whose value toggles when 
signal_name is active

signal_name’transaction
Signal delayed by T units of timesignal_name’delayed(T)

Implicit SignalSignal attribute

• Internal signals are useful modeling tools
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Signal Attributes: Example

architecture behavioral of attributes is
begin

outdelayed <= data'delayed(5 ns);
outtransaction <= data'transaction;

end attributes;

These are real (in simulation) signals and 
can be used elsewhere in the model

Re-appearance of delta delays
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Examples

• Detecting edges
– Edge triggering

• Measuring time to last event
– Detecting inter-event times on a signal

• Careful about detection time to last event on a signal!
– Creating delta-delayed signals

– Detecting setup/hold time violations
• Difference between time of last event on a signal and current 

clock transition
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Function Attributes (cont.)

• Function array attributes

• type mem_array is array(0 to 7) of bit_vector(31 downto 0)
– mem_array’left = 0
– mem_array’right = 7
– mem_array’length = 8 (value kind attribute)

returns the lower bound of the index rangearray_name’low
returns the upper bound of the index rangearray_name’high

returns the right bound of the index rangearray_name’right
returns the left bound of the index rangearray_name’left

FunctionFunction attribute
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Range Attributes

for i in value_array’range loop
...
my_var := value_array(i);
...
end loop;

•Makes it easy to write loops

•Returns the index range of a constrained array
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Outline

• Abstraction and the Process Statement
– Concurrent processes and CSAs

• Process event behavior and signals vs. variables

• Timing behavior of processes

• Attributes

• Putting it together modeling state machines
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State Machines

• Basic components 
– Combinational component: output function and next state 

function
– Sequential component

• Natural process-based implementation 

Combinational
logicInputs

Outputs

State

Clk

Next state

s0 s1 0/11/0

0/1

1/0
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Example: State Machine 

library IEEE;
use IEEE.std_logic_1164.all;
entity state_machine is
port(reset, clk, x : in std_logic;
z : out std_logic);
end entity state_machine;
architecture behavioral of state_machine is
type statetype is (state0, state1);
signal state, next_state : statetype := state0;
begin
comb_process: process (state, x) is
begin
--- process description here
end process comb_process;
clk_process: process is
begin
-- process description here
end process clk_process;
end architectural behavioral;
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Example: Output and Next State Functions

•Combination of the next state and output functions

comb_process: process (state, x) is
begin
case state is -- depending upon the current state
when state0 => -- set output signals and next state
if x = ‘0’ then
next_state <= state1;
z <= ‘1’;
else next_state <= state0;
z <= ‘0’;
end if;
when state1 =>
if x = ‘1’ then
next_state <= state0;
z <= ‘0’;
else next_state <= state1;
z <= ‘1’;
end if;
end case;
end process comb_process;
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Example: Clock Process

• Use of asynchronous reset to initialize into a known state

clk_process: process is
begin
wait until (clk’event and clk = ‘1’); -- wait until the 
rising edge
if reset = ‘1’ then -- check for reset and initialize 
state
state <= statetype’left;
else state <= next_state;
end if;
end process clk_process;
end behavioral;
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Summary 

• Processes
– variables and sequential statements
– if-then, if-then-else, case, while, for
– concurrent processes
– sensitivity list

• The Wait statement 
– wait until, wait for, wait on

• Attributes
• Modeling State machines

wait on ReceiveData’transaction
if ReceiveData’delayed = ReceiveData then
..


