
1

ECE 4170 (1)

Basic Language Concepts:
Synthesis

© Sudhakar Yalamanchili, Georgia Institute of Technology

ECE 4170 (2)

Synthesis from VHDL Descriptions

• Produce (infer) a correct hardware implementation
– Note that multiple alternative implementations are feasible

• Synthesis process depends on
– Hardware primitives
– Synthesis goals, e.g., area vs. speed

• What are the challenges/issues?

entity my_ckt is
port(x, y, w :in bit;

v, z : out bit)
end entity my_ckt;

architecture behavioral of my_ckt is
begin
--
-- some code here
--
end architecture behavioral;

x
y

w

v

z

2

ECE 4170 (3)

Challenges

• We need to infer
– Bit widths
– Number of functional units

• What about control?
– Is there an implied priority order

among options?

• What is the baseline against
which reconcile options?
– Language defines the semantics

library IEEE;
use IEEE.std_logic_1164.all;
entity synth is
port (A, B, C, D: in integer;

Sel : in std_logic_vector(1 downto 0);
Z : out integer);

end entity synth;

architecture behavioral of synth is
begin
with Sel select
Z <= A+B when “00”,

C + D when “10”,
x“00000000” when others;

end architecture behavioral;

?

ECE 4170 (4)

Approaches

• Inference from declarations

• Inference from concurrent signal assignment
statements

• In all cases, inference is grounded in language
semantics
– For example, the definition of an integer as comprising 32-

bits

3

ECE 4170 (5)

Inference from Declarations

• How are signals implemented?
– As wires
– As latches of flip flops
– Choice depends on how a signal is used

• Inference from data types
– For simulation, type definition determines a range of values
– For synthesis, type definition determines bit widths

signal result: std_logic_vector (12 downto 0);
signal count: integer;
signal index: integer range 0 to 18;

type state_type is (state0, state1, state2, state3);
signal next_state: statetype;

ECE 4170 (6)

Inference from Declarations (cont.)

• Bit width required for a signal can be determined
explicitly or implicitly
– Programmer defined
– Via program analysis

• Hints go a long way towards minimizing hardware

• Enumerated types implicitly define the bit width of a
signal

• What can you do?

4

ECE 4170 (7)

Inference from Simple Concurrent Signal
Assignment Statements

• Take a signal-centric view
– Consider signals with a single driver

• Behavior corresponds to that of a combinational
circuit
– When inputs (RHS) change the output is recomputed
– Model produces one signal assignment statement for every

signal in the circuit

• Operator inferencing
– Operations and corresponding gate types
– Interconnection between operators

• Delay information is ignored
– Determined from the library primitives

ECE 4170 (8)

Inference from Simple CSAs

• Operator precedence controls the depth of the circuit

library IEEE;
use IEEE.std_logic_1164.all;

entity concurrent is
port (s, t, u, w: in std_logic;

v: out std_logic);
end entity concurrent;

architecture dataflow of concurrent is
signal s1, s2 : std_logic;
begin
L1: s1 <= s and t and u and w;
L2: s2 <= (s and t) and (u and w);
L3: v <= s1 or s2;
end architecture dataflow;

Synthesized gate level implementation

FPGA implementation

Technology mapping

w

u

t

s

v

Z=A*B*C*D

A
B
C

Z

D

5

ECE 4170 (9)

Inference from Simple CSAs (cont.)

architecture dataflow of full_adder is
signal s1, s2, s3: std_ulogic;
begin
sum <= in1 xor in2 xor c_in;
c_out <= (in1 and c_in) or (in2 and c_in) or (in1 and in2);
end architecture dataflow;

c_out

in1

in2

c_in

sum

B
A

A
B

C

C

Z=A*B+A*C+B*C

Z

Z

Z=A*B*C+A*B’*C+A’*B*C’+A*B’*C’

ECE 4170 (10)

Inference from Conditional CSAs

• Any change on input signals causes re-computation
of the output signal combinational logic

• Implied priority order!
– Priority logic may be optimized for mutually exclusive

branches

• Six variable boolean equation and 4 input LUTs
– Effectively produces a gate level implementation of a

multiplexor

s0 s1

in1
in2
in3

in0

z

architecture behavioral of mux4 is
begin
z <= in0 when s0 = ‘0’ and s1 = ‘0’ else

in1 when s0 = ‘0’ and s1 = ‘1’ else
in2 when s0 = ‘1’ and s1 = ‘0’ else
in3 when s0 = ‘1’ and s1 = ‘1’ else
‘0’;

end architecture behavioral;

6

ECE 4170 (11)

Inference from Conditional CSAs (cont.)

FPGA implementation

Synthesized gate level implementation
(note priority logic)

in0

in1

in2

in3

s1

s0

z

B
in2

in3

s0

s1

in0

in1

z

A

A

A

B

B

C

C

D

D

Z

Z

Z

Z=A + B

Z=A*B’*C + A*B*D

Z=A’*B’*C + A’*B*D

ECE 4170 (12)

Example: Priority Encoder

• Note generation of priority
logic

• Must be mapped to LUTs

architecture behavior of priority is
begin
z <= “00” when datain (0) = ‘1’ and valid = ‘1’ else

“10” when datain (2) = ‘1’ and valid = ‘1’else
“01” when datain (1) = ‘1’ and valid = ‘1’else
“11” when datain (3) = ‘1’ and valid = ‘1’else
“00”;
end architecture behavior;

datain<3>

datain<1>

datain<0>

valid

datain<2>

z<1>

z<0>

7

ECE 4170 (13)

Synthesis of Comparison Logic

• Comparisons that make sense in a simulation may
not be meaningful for synthesis
– For example, comparisons with don’t care symbols are

assumed to return false!

• Equality tests for other than 0/1 return false

• Note: consider these implementations when writing
synthesizable VHDL code

ECE 4170 (14)

Example: Synthesis and Comparison
Logic

architecture behavior of priority is
begin
z <= “00” when datain = “---1” and valid = ‘1’ else

“10” when datain = “-100” and valid = ‘1’else
“01” when datain = “--10” and valid = ‘1’else
“11” when datain = “1000” and valid = ‘1’else
“00”;

end architecture behavior;

datain<3>

datain<2>

datain<1>

datain<0>

z<0>

z<1>
valid

Z = 00 or 11

These tests (with don’t care)
always return false

8

ECE 4170 (15)

Inference from Selected CSAs

• All choices are evaluated and only one must be true
• No priority logic implied
• Example

– Note how output bits are set
– Two gate (LUT) implementation

with datain select
result <= “00” when “0001”,

“01” when “0010”,
“10” when “0100”,
“11” when “1000”,
“XX” when others;

end architecture behavioral;

datain<0>

datain<1>

datain<2>

datain<3>

result<0>

result<1>

ECE 4170 (16)

Inference from Selected CSAs

• The “unaffected” keyword (VHDL’93 only)

• For this value of the select expression the output is
unaffected

• The output retains it previous value

with datain select
result <= “00” when “0001”,
“01” when “0010”,
“10” when “0100”,
“11” when “1000”,
unaffected when others;

A latch is inferred!

9

ECE 4170 (17)

Synthesis Hints/Issues Using CSAs

• Simulation - synthesis mismatches
– Delay statements are ignored for synthesis

• Simulated timing may not match timing of synthesized result
– Comparison logic

• Results may differ

• Do not utilize initialization in declarations: use explicit
resets
– Mimic normal hardware design process

• Provide hints in declarations
• Use of the “unaffected” keyword may cause latches

to be inferred
• Optimize the “when others” clause: use of don’t care

logic

ECE 4170 (18)

Synthesis Hints/Issues Using CSAs (cont.)

• Use parentheses to control circuit depth and
therefore speed

• Selected signal assignment vs. conditional signal
assignment statements
– Former causes less logic to be inferred
– Consider whether order of evaluation matters or not

10

ECE 4170 (19)

Summary

• Declarations can be rich source of information for
synthesis

• Language semantics define how one can infer logic
for the implementation of each signal assignment
statement
– The inference of priority logic
– Use of non-synthesizable concepts, e.g., don’t care values

• Programming style has a major impact on quality of
results
– Synthesis compilers seek powerful analysis techniques to

infer beyond the obvious

