
1

ECE 4170 (1)

Basic Language Concepts

© Sudhakar Yalamanchili, Georgia Institute of Technology

ECE 4170 (2)

Describing Design Entities

• Primary programming abstraction is a design entity
– Register, logic block, chip, board, or system

• What aspects of a digital system do we want to
describe?
– Interface: how do we connect to it
– Function: what does it do?

• VHDL 1993 vs. VHDL 1987

b

a sum

carry

2

ECE 4170 (3)

Describing the Interface: The Entity Construct

• The interface is a collection of ports
– Ports are a new programming object: signal
– Ports have a type, e.g., bit
– Ports have a mode: in, out, inout (bidirectional)

entity half_ADder is
port (a, b : in bit;

sum, carry :out bit);
end entity half_adder;

case insensitive

VHDL 1993

b

a sum

carry

ECE 4170 (4)

The Signal Object Type

• VHDL supports four basic objects: variables,
constants, signals and file types (1993)

• Variable and constant types
– Follow traditional concepts

• The signal object type is motivated by digital system
modeling
– Distinct from variable types in the association of time with

values
– Implementation of a signal is a sequence of time-value pairs!

• Referred to as the driverdriver for the signal

3

ECE 4170 (5)

Example Entity Descriptions

Q

QQ

D

clk

R

S

op
N
Z

A B

C

entity ALU32 is
port(A, B: in bit_vector (31 downto 0);

C : out bit_vector (31 downto 0);
Op: in bit_vector (5 downto 0);
N, Z: out bit);

end entity ALU32;

entity D_ff is
port(D, Q, Clk, R, S: in bit;

Q, Qbar : out bit);
end entity D_ff;

MSB
LSB

ECE 4170 (6)

Describing Behavior: The Architecture
Construct

• Description of events on output signals in terms of
events on input signals: the signal assignment
statement

• Specification of propagation delays
• Type bit is not powerful enough for realistic

simulation: use the IEEE 1164 value system

b

a sum

carry

entity half_adder is
port (a, b : in bit;

sum, carry :out bit);
end entity half_adder;

architecture behavioral of half_adder is
begin
sum <= (a xor b) after 5 ns;
carry <= (a and b) after 5 ns;
end architecture behavior;

VHDL 1993

4

ECE 4170 (7)

Example Entity Descriptions: IEEE 1164

Q

QQ

D

clk

R

S

op
N
Z

A B

C

entity D_ff is
port(D, Q, Clk, R, S: in std_ulogic;

Q, Qbar : out std_ulogic);
end entity D_ff;

entity ALU32 is
port(A, B: in std_ulogic_vector (31 downto 0);

C : out std_ulogic_vector (31 downto 0);
Op: in std_ulogic_vector (5 downto 0);
N, Z: out std_logic);

end entity ALU32;

ECE 4170 (8)

Describing Behavior: The Architecture
Construct

library IEEE;
use IEEE.std_logic_1164.all;

entity half_adder is
port (a, b : in std_ulogic;
sum, carry :out std_ulogic);
end entity half_adder;

architecture behavioral of half_adder is
begin
sum <= (a xor b) after 5 ns;
carry <= (a and b) after 5 ns;
end architecture behavioral;

• Use of the IEEE 1164 value system requires inclusion of the
library and package declaration statements

b

a sum

carry

Declarations for a
design entity

5

ECE 4170 (9)

Libraries and Packages

• Libraries are logical units that are mapped to physical directories
• Packages are repositories for type definitions, procedures, and

functions
– User defined vs. system packages

package

package

package body

specification of the

code blocks

declaration package contents

ECE 4170 (10)

Configurations

architecture-3
architecture-2

architecture-1

entity configuration

• Separate the specification of the interface from that of
the implementation
– An entity may have multiple architectures

• Configurations associate an entity with an architecture
– Binding rules: default and explicit

• Use configurations (more later!)

6

ECE 4170 (11)

Design Units

• Primary design units
– Entity
– Configuration
– Package Declaration
– These are not dependent on other design units

• Secondary design units
– Package body
– Architecture

• Design units are created in design files

• Now you know the layout of a VHDL program!

ECE 4170 (12)

Simple Signal Assignment

In1
In2

c_in

c_out

sum
s1

s3

s2

library IEEE;
use IEEE.std_logic_1164.all;
entity full_adder is
port (in1, in2, c_in: in std_ulogic;

sum, c_out: out std_ulogic);
end entity full_adder;

architecture dataflow of full_adder is
signal s1, s2, s3 : std_ulogic;
constant gate_delay: Time:= 5 ns;
begin
L1: s1 <= (In1 xor In2) after gate_delay;
L2: s2 <= (c_in and s1) after gate_delay;
L3: s3 <= (In1 and In2) after gate_delay;
L4: sum <= (s1 xor c_in) after gate_delay;
L5: c_out <= (s2 or s3) after gate_delay;
end architecture dataflow;

Declarations

7

ECE 4170 (13)

Simple Signal Assignment Statement

• The constant programming object
– Values cannot be changed

• Use of signals in the architecture
– Internal signals connect components

• A statement is executed when an event takes place
on a signal in the RHS of an expression
– 1-1 correspondence between signal assignment statements

and signals in the circuit
– Order of statement execution follows propagation of events

in the circuit
– Textual order does not imply execution order

ECE 4170 (14)

Implementation of Signals

10
1 0→

23
1 Z→

24
0 1→

s <= (In1 nand In2) after gate_delay;

value expression time expression

waveform element

Driver or projected waveform

Transaction

8

ECE 4170 (15)

Implementation of Signals (cont.)

• In the absence of initialization, default values are
determined by signal type

• Waveform elements describe time-value pairs

• Transactions are internal representations of signal
value assignments
– Events correspond to new signal values
– A transaction may lead to the same signal value

ECE 4170 (16)

Implementation of Signals (cont.)

• Driver is set of future signal values: current signal
value is provided by the transaction at the head of the
list

• We can specify multiple waveform elements in a
single assignment statement
– Specifying multiple future values for a signal

• Rules for maintaining the driver
– Conflicting transactions

0 1
@24ns

1 0
@30ns

0 1
@20ns

1 0
@18ns

driver

9

ECE 4170 (17)

Example: Waveform Generation

• Multiple waveform elements can be specified in a
single signal assignment statement

• Describe the signal transitions at future point in time
– Each transition is specified as a waveform element

10 4020 30

signal <= ‘0’,‘1’ after 10 ns,‘0’ after 20 ns,‘1’ after 40 ns;

signal

ECE 4170 (18)

Resolved Signal Types

• At any point in time what is the value of the bus
signal?

• We need to “resolve” the value
– Take the value at the head of all drivers
– Select one of the values according to a resolution function

• Predefined IEEE 1164 resolved types are std_logic
and std_logic_vector

10

ECE 4170 (19)

Conditional Signal Assignment

• First true conditional expression determines the output value

library IEEE;
use IEEE.std_logic_1164.all;
entity mux4 is
port (In0, In1, In2, In3 : in std_logic_vector (7 downto 0);
Sel: in std_logic_vector(1 downto 0);
Z : out std_logic_vector (7 downto 0));
end entity mux4;
architecture behavioral of mux4 is
begin
Z <= In0 after 5 ns when Sel = “00” else

In1 after 5 ns when Sel = “01” else
In2 after 5 ns when Sel = “10” else
In3 after 5 ns when Sel = “11” else
“00000000” after 5 ns;

end architecture behavioral;

note type

Evaluation Order is
important!

ECE 4170 (20)

Unaffected Signals

• Value of the signal is not changed
• VHDL 1993 only!

library IEEE;
use IEEE.std_logic_1164.all;

entity pr_encoder is
port (S0, S1,S2,S3: in std_logic;
Z : out std_logic_vector (1 downto 0));
end entity pr_encoder;

architecture behavioral of pr_encoder is
begin
Z <= “00” after 5 ns when S0 = ‘1’ else

“01” after 5 ns when S1 = ‘1’ else
unaffected when S2 = ‘1’ else
“11” after 5 ns when S3 = ‘1’ else
“00” after 5 ns;

end architecture behavioral;

11

ECE 4170 (21)

Selected Signal Assignment Statement

• The “when others” clause can be used to ensure that all options
are covered

• The “unaffected” clause may also be used here

library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is
port (In0, In1, In2, In3 : in std_logic_vector (7 downto 0);
Sel: in std_logic_vector(1 downto 0);
Z : out std_logic_vector (7 downto 0));
end entity mux4;

architecture behavioral-2 of mux4 is
begin
with Sel select
Z <= (In0 after 5 ns) when “00”,

(In1 after 5 ns) when “01”,
(In2 after 5 ns) when “10”,
(In3 after 5 ns) when “11”
(In3 after 5 ns) when others;

end architecture behavioral;

All options must be covered
and only one
must be true!

ECE 4170 (22)

A VHDL Model Template
library library-name-1, library-name-2;
use library-name-1.package-name.all;
use library-name-2.package-name.all;

entity entity_name is
port(input signals : in type;

output signals : out type);
end entity entity_name;

architecture arch_name of entity_name is
-- declare internal signals
-- you may have multiple signals of different types
signal internal-signal-1 : type := initialization;
signal internal-signal-2 : type := initialization;
begin
-- specify value of each signal as a function of other signals
internal-signal-1 <= simple, conditional, or selected CSA;
internal-signal-2 <= simple, conditional, or selected CSA;

output-signal-1 <= simple, conditional, or selected CSA;
output-signal-2 <= simple, conditional, or selected CSA;
end architecture arch_name;

Declare external libraries and
visible components

Define the interface

Declare signals used to connect
components

Definition of how & when internal
signal values are computed

Definition of how & when external
signal values are computed

12

ECE 4170 (23)

Summary

• Primary unit of abstraction is a design entity

• Design units include
– Primary design units

• entity, configuration, package declaration
– Secondary design units

• architecture, package body

• Concurrent signal assignment statements
– Simple, selected, conditional
– Can be coalesced to form models of combinational circuits

