
1

ECE 4170 (1)

Advanced Topics

ECE 4170 (2)

Topics

• Physical Types

• Array Types

• Entity Attributes

• Access Types and Record Structures

• Shared Variables

2

ECE 4170 (3)

Physical Types

© Sudhakar Yalamanchili, Georgia Institute of Technology

ECE 4170 (4)

Modeling Physical Quantities

• Physical quantities are represented by the type of
their measured values
– Integer, real, logical, etc.

• Precision, range, and type casting issues often
require the programmer to manage quantization

• Hardware description languages expand the range of
physical quantities to be represented and managed

3

ECE 4170 (5)

Modeling Physical Quantities: Example

entity inv_rc is
generic (c_load: real:= 0.066E-12); -- farads
port (i1 : in std_logic;

o1: out: std_logic);
constant rpu: real:= 25000.0; --ohms
constant rpd: real :=15000.0; -- ohms
end inv_rc;

architecture delay of inv_rc is
constant tplh: time := integer (rpu*c_load*1.0E15)*3 fs;
constant tpll: time := integer (rpu*c_load*1.0E15)*3 fs;
begin
o1 <= ‘1’ after tplh when i1 = ‘0’ else

‘0’ after tpll when i1- = ‘1’ or i1 = ‘Z’ else
‘X’ after tplh;

end delay;
Example adapted from “VHDL: Analysis and Modeling of Digital Systems,” Z. Navabi, McGraw Hill, 1998.

explicit type casting and range management

visible in all architectures

These are
known/evaluated at

compile time

ECE 4170 (6)

Notion of Physical Types

• Purpose: to be able to create and manipulate objects
that correspond to physical, measurable, quantities
– Resistance, capacitance, time, inductance, etc.

• time is a pre-defined physical type in the language
type time is range <implementation dependent>
units
fs;
ps = 1000 fs; -- femtoseconds
ns = 1000 ps; -- picoseconds
us = 1000 ns; -- microseconds
ms = 1000 us; -- milliseconds
s = 1000 ms; -- seconds
min = 60 s; -- minutes
hour = 60 min; -- hours
end units;

4

ECE 4170 (7)

Other Examples

type power is range 1 to 1000000
units
uw;
mw = 1000 uw;
w = 1000 mw;
kw = 1000 w;
mgw = 1000 kw;
end units;

• Define a base unit and integer range that a variable
or constant can take
– Define aggregate units

in terms of base units and only integer bounds

ECE 4170 (8)

Physical Types: Example (cont.)

type capacitance is range 0 to
1E16

units
ffr; -- femtofarads
pfr = 1000 ffr;
nfr = 1000 pfr;
ufr = 1000 nfr
mfr = 1000 ufr
far = 1000 mfr;
kfr = 1000 far;
end units;

type resistance is range 0 to 1E16
units
l_o; -- milli-ohms
ohms = 1000 l_o;
k_o= 1000 ohms;
m_o = 1000 k_o;
g_o = 1000 m_o;
end units;

• Programmer must manage interpretations of the
values

• Rather than mapping the values to the real numbers,
create new physical types

Example adapted from “VHDL: Analysis and Modeling of Digital Systems,” Z. Navabi, McGraw Hill, 1998.

5

ECE 4170 (9)

Physical Types: Example (cont.)

entity inv_rc is
generic (c_load: capacitance := 66 ffr); -- farads
port (i1 : in std_logic;

o1: out: std_logic);
constant rpu: resistance:= 25000 ohms;
constant rpd : resistance := 15000 ohms;
end inv_rc;

architecture delay of inv_rc is

constant tplh: time := (rpu/ 1 l_o)* (c_load/1 ffr) *3 fs/1000;
constant tpll: time := (rpu/ 1 l_o)* (c_load/1 ffr) *3 fs/1000;
begin
o1 <= ‘1’ after tplh when i1 = ‘0’ else

‘0’ after tpll when i1 = ‘1’ or i1 = ‘Z’ else
‘X’ after tplh;

end delay;

Example adapted from “VHDL: Analysis and Modeling of Digital Systems,” Z. Navabi, McGraw Hill, 1998.

Define a new overloaded multiplication operator

rpu * c_load * 3

This expression now becomes

ECE 4170 (10)

Basic Ideas

• Arithmetic operators are not defined for physical
types
– Convert the values to dimensionless quantities
– Perform integer operations
– Convert back to a physical type

• One of the arithmetic operands is an integer and one is a
physical type

• Many aspects of type management is moved from
programmer to language

6

ECE 4170 (11)

Array Types

ECE 4170 (12)

Thinking About Arrays
All elements must be of the

same type

• Types of multidimensional arrays
– Multidimensional arrays
– Arrays of arrays

• The type determines how elements in an array can be
referenced
– Indexing
– Using range information dependent on construction of the

declaration

7

ECE 4170 (13)

Referencing Array Data

type std_byte is array (7 downto 0) of std_logic;

type std_word is array (31 downto 0) of std_logic;

type 2Dmask is array (7 downto 0, 4 downto 0) of
std_logic;

type register_file is array (31 downto 0) of std_word;

Can mix ascending and descending ranges

ECE 4170 (14)

Array Aggregates

std_word <= (3 => ‘1’, others => ‘Z’)
– Named associations

std_word <= (‘0’, 3 => ‘1’, others => ‘Z’);
– Positional association

std_word <= (4 downto 0 => ‘1’, others => ‘Z’);
– Specifying ranges
– Can mix descending and ascending ranges

• Aggregates apply to each dimension

8

ECE 4170 (15)

Nesting Array Aggregates

• Specification applies to each dimension of the array

2Dmask <= (others => (others => Z));

2Dmask <= (others => (‘1’, others => Z));

ECE 4170 (16)

General Aggregate Operations

• This is the combination of one or more values into a
more complex type

(a, b) a & b

Must be of same size and type Can be different length arrays

9

ECE 4170 (17)

Generalizing Array Indexing

• Indices can be of types other than integers

• Array access follows the same principle use the
type value to define the corresponding array element

type std_byte is array (std_logic) of std_logic;
– Nine elements in this array type
– Indexed by the values of the std_logic type in the order in in the order in

which it is definedwhich it is defined

• Named associations, positional associations, and
array aggregates can be mixed and matched

ECE 4170 (18)

Unconstrained Arrays

• Useful for building generic, parametric models
• Type bit_vector is array (natural range<>) of bit

procedure write_v1d (
variable f: out text; v : in std_logic_vector) is
variable buf: line;
variable c : character;
begin
for i in v’range loop
case v(i) is
when ‘X’ => write(buf, ‘X’);
..
..
..

function wire_or (sbus :std_ulogic_vector)
return std_ulogic is
begin
for i in sbus’range loop
if sbus(i) = ‘1’ then
return ‘1’;
end if;
end loop;
return ‘0’;
end wire_or;

ascending or descending range

10

ECE 4170 (19)

For Hardware Generation

library IEEE;
use IEEE.std_logic_1164.all;

entity gregister is
port (din : in std_logic_vector;

qout: out std_logic_vector;
clk, we : in std_logic);

end entity gregister;

architecture behavioral of gregister is

component dff_en is
Port (d : in STD_LOGIC;

we : in STD_LOGIC;
clk : in STD_LOGIC;
q : out STD_LOGIC);

end component dff_en;
begin

dreg: for i in din'range generate
reg: dff_en port map(d=>din(i), q=>qout(i), we=>we, clk=>clk);
end generate;

end architecture behavioral

unconstrained arrays

ECE 4170 (20)

Entity Attributes

11

ECE 4170 (21)

Entity Attributes

• Enables identification of aspects of the specific entity
such as
– Name: entity_name’simple_name
– Instance: entity_name’path_name
– Path to this instance: entity_name’instance_name

• Useful in debugging programs

• Example

ECE 4170 (22)

Example

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use STD.textio.all;

entity nand2 is
generic (gate_delay: time:= 2 ns);

port (a, b : in STD_LOGIC;
c : out STD_LOGIC);

end entity nand2;

architecture behavioral of nand2 is
Begin

c <= a nand b after gate_delay;

process
variable buf: line;
variable simple: string(1 to

nand2'simple_name'length):= (others =>'.');
variable path: string(1 to

nand2'path_name'length):= (others =>'.');

variable instance: string(1 to
nand2'instance_name'length):= (others =>'.');

begin
simple := nand2'simple_name;
path := nand2'path_name;
instance := nand2'instance_name;

write (buf, simple);
writeline (output,buf);

write (buf, path);
writeline (output,buf);

write (buf,instance);
writeline (output,buf);
wait;
end process;

Adapted from: Z. Navabi, “VHDL: Analysis and Modeling of Digital Systems”, McGraw Hill 1998

12

ECE 4170 (23)

User Defined Attributes

• These attributes do not have simulation or synthesis
semantics. They are for the use by the designer

• This is another mechanism for communication
information throughout a design

Design Unit

Packages &
Libraries

architectures

via configurations

via context clauses or attributesor attributes

ECE 4170 (24)

Record Types

• Records are a composite type where each element may be of a
distinct type

type opcode is (add, sub, and, or, xor, sl, sr, ld, sw, rot, nop);
type reg_addr is integer range 0 to 31;
type addr is unsigned (17 downto 0);
type op_format is unsigned (12 downto 0);

type r_format is record type i_format is record
op : opcode; op : opcode;
dest: reg_addr; dest: reg_addr;
source1 : reg_addr; source1 : reg_addr;
source2: reg_addr; mem_addr: addr;
misc_op: op_format; end record;
end record;

destop source1 source2 op_format destop source1 mem_addr

13

ECE 4170 (25)

Alias

• Declare alternative labels for parts of a structure
– For example, consider bits 4 through 8 of the memory address

as a cache line address

signal current_instr : i_format:= (nop, 0,0,”000000000000000000”);
alias cache_line is current_instr.mem_addr(7 downto 3);
..
..
index <= cache_line;
…
cache_line <= “1110”;

ECE 4170 (26)

Comments

• VHDL is intended to model hardware structures at all
levels of design
– Device timing, delay, physical attributes
– Gate level timing, delay, logic operations, physical

attributes
– Instruction set level instruction formats, memory

structures, operating system data, architecture state
information

– Block level: test bench, verification & validation

• Different aspects of the language are used at
different levels of modeling

• This distinguishes VHDL from many domain-specific
modeling languages

14

ECE 4170 (27)

Access Types: Also Known as Pointers

type my_struct; -- incomplete type declaration

type pointer is access my_struct; -- define access

type my_struct is record -- define type
data1: integer;
data2: integer;
next: pointer;
end record;

ECE 4170 (28)

Using Access Types

• Follow conventional programming language usage in
the context of records, linked lists, pointers, etc.

• Traversal
variable head : pointer:= NULL;
variable p1 :pointer;
p1 := head.next;

• Allocation de-allocation
head.next := NEW my_struct;
..
deallocate (p1);

..

15

ECE 4170 (29)

Shared Variables

• Shared variables represent a way to change the
visible scope of a variable
– Now accessible to a range of procedures and processes
– Effect is non-deterministic

• Examples

process A process B process C
variable x : .. variable y: .. variable z: ..

shared variable my_var: integer

Architecture
visible in processes
A, B & C

visible only in
process A

ECE 4170 (30)

Blocks and Guarded Signal Assignments

• Blocks are a mechanism to identify a “part” of a
design without treating it as a complete design unit
– Entity/architecture pair need not be created

• Syntactically identify a part of the design
– Treat it like a design entity in the sense that

• It can have ports and generics
• Has a declarative part
• Has a concurrent statement part

16

ECE 4170 (31)

Example: Blocks and Guards

library IEEE;
use IEEE.std_logic_1164.all;

entity my_dff is
generic (gate_delay: time:= 5 ns);
port (d, clk, we: in std_logic;

q, not_q: out std_logic);
end entity my_dff;

architecture behavioral of my_dff is
begin

my_block: block (rising_edge(clk) and (we = '1')) is
begin
q<= guarded d after gate_delay;
not_q<= guarded (not d) after gate_delay;
end block my_block;

end architecture behavioral;

Value of the implicit guard signal

ECE 4170 (32)

More on Processes: Postponed and Passive

• Postponed processes
– Execute the processes after all delta events on sensitive

signals
– Reduction in number of process invocations reduce

simulation time
– Reduction in the number of events inserted/removed from

signal drivers reduce simulation time

• Passive processes
– These are processes that do not alter the simulation state
– They can be placed to perform checks

17

ECE 4170 (33)

Example

entity dff is
generic (sq_delay,

rq_delay,cq_delay: time:=6 ns)
port (d, set, rst, clk :in bit;
q, notq: out bit);
end entity dff;

architecture behavioral of dff is
begin
process (rst, clk, set)
type bit_time is record
state : bit;
sd_delay: time;
end record:
variable sd: bit_time:= (‘0’, 0 ns);

begin
if set =‘1’ the
sd := (‘1’, sq_delay);
elsif rst = ‘1’ then
sd := (‘0’, rq_delay);
elsif (rising_edge(clk)) then
sd := cq_delay;
end if;

q <= sd.state after sd.delay;
notq <= not sd.state after

sd.delay;
end process;
end architecture behavioral;

Adapted from: Z. Navabi, “VHDL: Analysis and Modeling of Digital Systems”, McGraw Hill 1998

ECE 4170 (34)

Example: Passive Processes
entity dff is

generic (sq_delay, rq_delay,cq_delay: time:=6 ns)
port (d, set, rst, clk :in bit;

q, notq: out bit);
process

begin
if set =‘1’ the

sd := (‘1’, sq_delay);
elsif rst = ‘1’ then

sd := (‘0’, rq_delay);
elsif (rising_edge(clk)) then

sd := cq_delay;
end if;

end process;
end entity dff;

architecture behavioral of dff is
begin
q <= sd.state after sd.delay;
notq <= not sd.state after sd.delay;
end process;
end architecture behavioral;

package body of my_package is
begin
type bit_time is record
state : bit;
sd_delay: time;
end record:
shared variable sd: bit_time:= (‘0’, 0 ns);
end package;

Adapted from: Z. Navabi, “VHDL: Analysis and Modeling of Digital Systems”, McGraw Hill 1998

18

ECE 4170 (35)

Disconnect Specification

• A signal can be disconnected from its driver by
assigning the NULL transaction
– The value then is determined by the signal kind

• Register : use the last known value
signal s1 : wired_or bus;

• Bus: use a resolution function
signal s2 : bit register:

• The availability of the disconnect specification

