
IEEE Std 1076.6™-2004
(Revision of

IEEE Std 1076.6-1999)
IE

E
E

 S
ta

n
d

ar
d

s 1076.6TM

IEEE Standard for VHDL Register
Transfer Level (RTL) Synthesis

3 Park Avenue, New York, NY 10016-5997, USA

IEEE Computer Society

Sponsored by the
Design Automation Standards Committee

IE
E

E
 S

ta
n

d
ar

d
s

11 October 2004

Print: SH95242
PDF: SS95242

Recognized as an
American National Standard (ANSI)

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2004 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 11 October 2004. Printed in the United States of America.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics
Engineers, Incorporated.

Print: ISBN 0-7381-4064-3 SH95242
PDF: ISBN 0-7381-4065-1 SS95242

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

IEEE Std 1076.6™-2004
(Revision of

IEEE Std 1076.6-1999)

IEEE Standard for VHDL Register
Transfer Level (RTL) Synthesis

Sponsor

Design Automation Standards Committee
of the
IEEE Computer Society

Approved 25 August 2004

American National Standard Institute

Approved 12 May 2004

IEEE-SA Standards Board

Abstract: This document specifies a standard for use of very high-speed integrated circuit hard-
ware description language (VHDL) to model synthesizable register-transfer level digital logic. A
standard syntax and semantics for VHDL register-transfer level synthesis is defined. The subset of
the VHDL language, which is synthesizable, is described, and nonsynthesizable VHDL constructs
are identified that should be ignored or flagged as errors.
Keywords: hardware description language, logic synthesis, register transfer level (RTL), very high-
speed integrated circuit hardware description language (VHDL)

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the
IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development
process, approved by the American National Standards Institute, which brings together volunteers representing varied view-
points and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without
compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus develop-
ment process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in
its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other dam-
age, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting
from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims
any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that
the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied “AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market,
or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the
time a standard is approved and issued is subject to change brought about through developments in the state of the art and
comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revi-
sion or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude
that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check
to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services
for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or
entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the advice of a com-
petent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific
applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare
appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any
interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its soci-
eties and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in
those cases where the matter has previously received formal consideration. At lectures, symposia, seminars, or educational
courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered
the personal views of that individual rather than the formal position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with
IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate
supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board

445 Hoes Lane

P.O. Box 1331

Piscataway, NJ 08855-1331USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of
Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To
arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive,
Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational
classroom use can also be obtained through the Copyright Clearance Center.

NOTE-Attention is called to the possibility that implementation of this standard may require use of subject mat-
ter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents
for which a license may be required by an IEEE standard or for conducting inquiries into the legal validity or
scope of those patents that are brought to its attention.

Introduction

(This introduction is not part of IEEE Std 1076.6-2004, IEEE Standard for VHDL Register Transfer Level (RTL) Synthesis.)

This standard describes a standard syntax and semantics for VHDL RTL synthesis. It defines the subset of
IEEE Std 1076TM-2002 (VHDL) that is suitable for RTL synthesis and defines the semantics of that subset
for the synthesis domain. This standard is based on IEEE Std 1076-2002, IEEE Std 1164TM-1993, and
IEEE Std 1076.3TM-1997.

The purpose of this standard is to define a syntax and semantics that can be used in common by all compliant
RTL synthesis tools to achieve uniformity of results in a similar manner to which simulation tools use
IEEE Std 1076-2002. This will allow users of synthesis tools to produce well-defined designs whose func-
tional characteristics are independent of a particular synthesis implementation by making their designs
compliant with this standard.

The standard is intended for use by logic designers and electronic engineers.

This document specifies IEEE Std 1076.6-2004, which is a revision of IEEE Std 1076.6-1999. The VHDL
Synthesis Interoperability Working Group (SIWG) of the IEEE Computer Society started the development
of IEEE Std 1076.6-2004 in January 1998. The work initially started as a Level 2 effort (Level 1 being
IEEE Std 1076.6-1999). In fact the work on Level 2 continued right after Level 1 was completed by the
working group. The working group realized that a Level 2 was required and that it would take some time to
develop and continued working on it at regular face-to-face meetings and teleconferences. As the Level 2
draft continued to mature, the working group decided that rather than having two different levels of synthe-
sis subsets, it was better to just have one standard, with IEEE Std 1076.6-2004 becoming Level 2.

The intent of this version was to include a maximum subset of VHDL that could be used to describe synthe-
sizable RTL logic. This included considering new features introduced by IEEE Std 1076-2002, new
semantics based on algorithmic styles rather than template-driven, and a set of synthesis attributes that could
be used to annotate an RTL description. The following team leaders drove this effort:

Syntax: Lance Thompson

Semantics: Vinaya Singh

Attributes: Sanjiv Narayan

In addition, the following provided much-needed additional support:

Web and reflector admin: David Bishop

Documentation: John Michael Williams

A majority of the work conducted by the working group was done via teleconferencing, which was held reg-
ularly and open to all. Also, the working group used an e-mail reflector and its web page effectively to
distribute and share information.
Copyright © 2004 IEEE. All rights reserved. iii

The following volunteers contributed to the development of this standard:
J. Bhasker, Chair

Jim Lewis, Vice-Chair

Development of IEEE Std 1076.6-1999

Initial work on this standard started as a synthesis interoperability working group under VHDL Interna-
tional. The working group was also chartered by the EDA Industry Council Project Technical Advisory
Board (PTAB) to develop a draft based on the donated subsets by the following companies/groups:

— Cadence

— European Synthesis Working Group

— IBM

— Mentor Graphics

— Synopsys

After the PTAB approved of the draft 1.5 with an overwhelming affirmative response, an IEEE PAR was
obtained to clear its way for IEEE standardization. Most of the members of the original group continued to
be part of the Pilot Group under P1076.6 to lead the technical work.

At the time the 1999 standard was completed, the P1076.6 Pilot Team had the following membership:

Many individuals from different organizations contributed to the development of this standard. In particular,
in addition to the Pilot Team, the following individuals contributed to the development of the standard by
being part of the working group:

In addition, 95 individuals on the working group e-mail reflector also contributed to this development.

Rob Anderson
Bill Anker
Victor Berman
David Bishop
Dominique Borrione
Dennis Brophy
Andrew Brown
Patrick Bryant
Ben Cohen
Tim Davis
Colin Dente
Wolfgang Ecker
Bob Flatt
Christopher Grimm
Steve Grout

Rich Hatcher
Mohammad Kakoee
Masamichi Kawarabayashi
Apurva Kalia
Satish Kumar
Evan Lavelle
Vijay Madisetti
Erich Marschner
Paul Menchini
Amitabh Menon
Egbert Molenkamp
Bob Myers
Sanjana Nair
Sanjiv Narayan
Zain Navabi

Jonas Nilsson
Alain Raynaud
Mehrdad Reshadi
Fredj Rouatbi
Steve Schultz
Manish Shrivastava
Vinaya Singh
Douglas Smith
Lance Thompson
Alessandro Uber
Jim Vellenga
Eugenio Villar
John Michael Williams
Francisco De Ycaza
Alex Zamfirescu

Rob Anderson
Victor Berman
J. Bhasker
David Bishop
Dominique Borrione
Dennis Brophy
Ben Cohen
Colin Dente

Wolfgang Ecker
Bob Flatt
Christopher Grimm
Rich Hatcher
Apurva Kalia
Masamichi Kawarabayashi
Jim Lewis
Sanjiv Narayan

Doug Perry
Steve Schultz
Doug Smith
Lance Thompson
Fur-Shing Tsai
Jim Vellenga
Eugenio Villar
Nels Vander Zanden

Bill Anker
LaNae Avra

Robert Blackburn John Hillawi
Pradip Jha
iv
 Copyri
ght © 2004 IEEE. All rights reserved.

Notice to users

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http://
standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for
errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/
index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying
patents or patent applications for which a license may be required to implement an IEEE standard or for
conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Participants

The following members of the individual balloting committee voted on this standard. Balloters may have
voted for approval, disapproval, or abstention.

When the IEEE-SA Standards Board approved this standard on 12 May 2004, it had the following
membership:

Don Wright, Chair
Steve M. Mills, Vice Chair
Judith Gorman, Secretary

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Satish K. Aggarwal, NRC Representative
Richard DeBlasio, DOE Representative

Alan Cookson, NIST Representative

Don Messina
IEEE Standards Project Editor

Bill Anker
Peter Ashenden
John Aynsley
Stephen Bailey
Jayaram Bhasker
Stefen Boyd
Kai Moon Chow
Keith Chow

Guru Dutt Dhingra
Colin Dente
George Economakos
Peter Flake
Ian Andrew Guyler
William A. Hanna
Jim Lewis
Michael McNamara

D. C. Mohla
E. Molenkamp
Serafin A. Perez Lopez
John Shields
Mark Tillinghast
John Michael Williams
Mark Zwolinski

Chuck Adams
H. Stephen Berger
Mark D. Bowman
Joseph A. Bruder
Bob Davis
Roberto de Boisson
Julian Forster*
Arnold M. Greenspan
Mark S. Halpin

Raymond Hapeman
Richard J. Holleman
Richard H. Hulett
Lowell G. Johnson
Joseph L. Koepfinger*
Hermann Koch
Thomas J. McGean
Daleep C. Mohla

Paul Nikolich
T. W. Olsen
Ronald C. Petersen
Gary S. Robinson
Frank Stone
Malcolm V. Thaden
Doug Topping
Joe D. Watson
Copyright © 2004 IEEE. All rights reserved
.
 v

Contents

1. Overview.. 1

1.1 Scope.. 1
1.2 Compliance to this standard... 1
1.3 Terminology... 2
1.4 Conventions ... 2

2. References.. 3

3. Definitions and acronyms .. 3

3.1 Definitions ... 3
3.2 Acronyms... 4

4. Predefined types... 5

5. Verification methodology .. 5

5.1 Combinational verification .. 6
5.2 Sequential verification ... 6

6. Modeling hardware elements ... 7

6.1 Edge-sensitive sequential logic.. 7
6.2 Level-sensitive sequential logic... 19
6.3 Three-state logic and busses .. 23
6.4 Combinational logic... 23
6.5 ROM and RAM memories... 24

7. Pragmas.. 29

7.1 Attributes ... 29
7.2 Metacomments... 46

8. Syntax .. 47

8.1 Design entities and configurations... 47
8.2 Subprograms and packages.. 52
8.3 Types.. 56
8.4 Declarations ... 61
8.5 Specifications... 67
8.6 Names .. 69
8.7 Expressions .. 71
8.8 Sequential statements... 75
8.9 Concurrent statements.. 81
8.10 Scope and visibility.. 86
8.11 Design units and their analysis .. 87
8.12 Elaboration... 88
8.13 Lexical elements .. 88
8.14 Predefined language environment ... 88

Annex A (informative) Syntax summary... 91

Annex B (normative) Synthesis package RTL_ATTRIBUTES.. 110

Index .. 111
Copyright © 2004 IEEE. All rights reserved. vi

IEEE Standard for VHDL Register
Transfer Level (RTL) Synthesis

1. Overview

1.1 Scope

This standard defines a subset of very high-speed integrated circuit hardware description language (VHDL)
that ensures portability of VHDL descriptions between register transfer level synthesis tools. Synthesis tools
may be compliant and yet have features beyond those required by this standard. This standard defines how
the semantics of VHDL shall be used, for example, to model level-sensitive and edge-sensitive logic. It also
describes the syntax of the language with reference to what shall be supported and what shall not be sup-
ported for interoperability.

Use of this standard should minimize the potential for functional simulation mismatches between models
before they are synthesized and after they are synthesized.

1.2 Compliance to this standard

1.2.1 Model compliance

A VHDL model shall be defined as being compliant to this standard if the model

a) Uses only constructs described as supported or ignored in this standard

b) Adheres to the semantics defined in this standard

1.2.2 Tool compliance

A synthesis tool shall be defined as being compliant to this standard if it

a) Accepts all models that adhere to the model compliance definition defined in 1.2.1

b) Supports language related pragmas defined by this standard

c) Produces a circuit model that has the same functionality as the input model based on the verification
process as outlined in Clause 5.
Copyright © 2004 IEEE. All rights reserved. 1

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
1.3 Terminology

The word shall indicates mandatory requirements strictly to be followed in order to conform to the standard
and from which no deviation is permitted (shall equals is required to). The word should is used to indicate
that a certain course of action is preferred but not necessarily required; or that (in the negative form) a cer-
tain course of action is deprecated but not prohibited (should equals is recommended that). The word may
indicates a course of action permissible within the limits of the standard (may equals is permitted).

A synthesis tool is said to accept a VHDL construct if it allows that construct to be legal input; it is said to
interpret the construct (or to provide an interpretation of the construct) by producing something that repre-
sents the construct. A synthesis tool is not required to provide an interpretation for every construct that it
accepts, but only for those for which an interpretation is specified by this standard.

The constructs in the standard shall be categorized as follows:

Supported: RTL synthesis shall interpret a construct, that is, map the construct to an equivalent
hardware representation.

Ignored: RTL synthesis shall ignore the construct and produce a warning. Encountering the con-
struct shall not cause synthesis to fail, but synthesis results may not match simulation results. The
mechanism, if any, by which RTL synthesis notifies (warns) the user of such constructs is not
defined by this standard. Ignored constructs may include unsupported constructs.

Not Supported: RTL synthesis does not support the construct. RTL synthesis does not expect to
encounter the construct, and the failure mode shall be undefined. RTL synthesis may fail upon
encountering such a construct. Failure is not mandatory; more specifically, RTL synthesis is allowed
to treat such a construct as ignored.

NOTE—A synthesis tool may interpret constructs that are identified as not supported in this standard. However a model
that contains such unsupported constructs is not compliant with this standard.1

1.4 Conventions

This standard uses the following conventions:

a) The body of the text of this standard uses boldface to denote VHDL reserved words (such as
downto).

b) The text of the VHDL examples and code fragments is represented in a fixed-width font.

c) Syntax text that is struck-through (e.g., text) refers to syntax that shall not be supported.

d) Syntax text that is underscored (e.g., text) refers to syntax that shall be ignored.

e) < and > pairs are used to represent text in one of several different, but specific forms. For example,
one of the forms of <clock_edge> could be “CLOCK'EVENT and CLOCK = '1'”.

f) Any paragraph starting with “NOTE—” is informative and not part of the standard.

g) The examples that appear in this document under “Example:” are for the sole purpose of demon-
strating the syntax and semantics of VHDL for synthesis. It is not the intent of this standard to
demonstrate, recommend, or emphasize coding styles that are more (or less) efficient in generating
an equivalent hardware representation. In addition, it is not the intent of this standard to present
examples that represent a compliance test suite, or a performance benchmark, even though these
examples are compliant to this standard (except as noted otherwise).

1Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.
2 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
2. References

This standard shall be used in conjunction with the following publications. When the following standards
are superseded by an approved revision, the revision shall apply.

IEEE Std 1076TM-2002, IEEE Standard VHDL Language Reference Manual.2, 3

IEEE Std 1076.3TM-1997, IEEE Standard Synthesis Packages (NUMERIC_BIT and NUMERIC_STD).

IEEE Std 1164TM-1993, IEEE Standard Multivalue Logic System for VHDL Model Interoperability
(STD_LOGIC_1164).

3. Definitions and acronyms

3.1 Definitions

For the purposes of this standard, the following terms and definitions apply. The Authoritative Dictionary of
IEEE Standards Terms, Seventh Edition should be referenced for terms not defined in this clause. Terms
used within this standard but not defined in this clause are assumed to be from IEEE Std 1076-2002,
IEEE Std 1164-1993, or IEEE Std 1076.3-1997.4

3.1.1 assignment reference: The occurrence of a literal or expression as the waveform element of a signal
assignment statement or as the right-hand side expression of a variable assignment statement.

3.1.2 combinational logic: Logic that settles to a state entirely determined by the current input values and
therefore that cannot store information. Any change in the input causes a new state completely defined by
the new inputs.

3.1.3 don’t care value: The enumeration literal ‘-’ of the type STD_ULOGIC (or subtype STD_LOGIC).

3.1.4 edge-sensitive storage element: Any storage element mapped to by a synthesis tool that

a) Propagates the value at the data input whenever an appropriate transition in value is detected on a
clock control input

b) Preserves the last value propagated at all other times, except when any asynchronous control inputs
become active (for example, a flip-flop)

3.1.5 high-impedance value: The enumeration literal ‘Z’ of the type STD_ULOGIC (or subtype
STD_LOGIC).

3.1.6 level-sensitive storage element: Any storage element mapped to by a synthesis tool that

a) Propagates the value at the data input whenever an appropriate value is detected on a clock control
input

b) Preserves the last value propagated at all other times, except when any asynchronous control inputs
become active (for example, a latch)

2The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
3IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ 08855-1331, USA (http://standards.ieee.org/).
4Information on references can be found in Clause 2.
Copyright © 2004 IEEE. All rights reserved. 3

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
3.1.7 logical operation: An operation for which the VHDL operator is and, or, nand, nor, xor, xnor, or
not.

3.1.8 metacomment: A VHDL comment (--) that is used to provide synthesis-specific interpretation by a
synthesis tool.

3.1.9 metalogical value: One of the enumeration literals ‘U’, ‘X’, ‘W’, or ‘-’ of the type STD_ULOGIC (or
subtype STD_LOGIC).

3.1.10 pragma: A generic term used to define a construct with no predefined language semantics that influ-
ences how a synthesis tool will synthesize VHDL code into an equivalent hardware representation.

3.1.11 sequential logic: Logic that settles to a state not determined solely by current inputs. The current
state of such logic can be determined only by knowing the current inputs and some history of past inputs in
their sequential order. Sequential logic always stores information from past input and therefore may be used
to implement storage elements.

3.1.12 synchronous assignment: An assignment that takes place when a signal or variable value is updated
as a direct result of a clock edge expression evaluating as true.

3.1.13 synthesis library: A library of digital design objects such as logic gates, chip pads, memory blocks,
or other blocks; instances of these elements are connected together by a synthesis tool to create a synthesized
netlist.

3.1.14 synthesis tool: Any system, process, or tool that interprets register transfer level VHDL source code
as a description of an electronic circuit and derives a netlist description of that circuit.

3.1.15 synthesis-specific attribute: An attribute recognized by a tool compliant to this standard.

3.1.16 user: A person, system, process, or tool that generates the VHDL source code that a synthesis tool
processes.

3.1.17 vector: A one-dimensional array.

3.1.18 well-defined: Containing no metalogical or high-impedance value.

3.2 Acronyms

LRM The IEEE VHDL language reference manual, that is, IEEE Std 1076-2002.

RTL The register transfer level of modeling circuits in VHDL for use with register transfer level
synthesis. Register transfer level is a level of description of a digital design in which the
clocked behavior of the design is expressly described in terms of data transfers between stor-
age elements in sequential logic, which may be implied, and combinational logic, which may
represent any computing or arithmetic-logic-unit logic. RTL modeling allows design hierarchy
that represents a structural description of other RTL models.
4 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
4. Predefined types

A synthesis tool, compliant with this standard, shall support the following predefined types:

a) BIT, BOOLEAN, and BIT_VECTOR as defined by IEEE Std 1076-2002

b) CHARACTER and STRING as defined in IEEE Std 1076-2002

c) INTEGER as defined in IEEE Std 1076-2002

d) STD_ULOGIC, STD_ULOGIC_VECTOR, STD_LOGIC, and STD_LOGIC_VECTOR as defined
by the package STD_LOGIC_1164 (IEEE Std 1164-1993)

e) SIGNED and UNSIGNED as defined by the VHDL package NUMERIC_BIT as part of
IEEE Std 1076.3-1997

f) SIGNED and UNSIGNED as defined by the VHDL package NUMERIC_STD as part of
IEEE Std 1076.3-1997

The synthesis interpretation of the values that belong to type STD_ULOGIC shall be as defined in
IEEE Std 1076.3-1997.

No array type, other than those listed in e) and f), shall be used to represent signed or unsigned numbers.

The synthesis tool shall also support user-defined and other types derived from the predefined types accord-
ing to the rules of 8.3.

By definition, if a type with a metalogical or high-impedance value is used in a model, then this type shall
have as an ancestor a type that belongs to the package STD_LOGIC_1164 (IEEE Std 1164-1993).

5. Verification methodology

Synthesized results may be broadly classified as either combinational or sequential. Sequential logic has
some form of internal storage (latch, register, memory). Combinational logic has outputs that are solely a
function of the inputs with no internal loops and no internal storage. Designs may contain both sequential
and combinational parts.

The process of verifying synthesis results using simulation consists of applying equivalent inputs to both the
original model and synthesized model and then comparing their outputs to ensure that they are equivalent.
Equivalent in this context means that a synthesis tool shall produce a circuit that is equivalent at the input,
output, and bidirectional ports of the model. As synthesis in general does not recognize the same delays as
simulators, the outputs cannot be compared at every simulation time. Rather, they can only be compared at
specific simulation times when all transient delays have settled and all active timeout clauses have been
exceeded. If the outputs do not match at all comparable times, the synthesis tool shall not be compliant.
There shall be no matching requirement placed on any internal nodes.

The input stimulus shall comply with the following criteria:

a) Input data does not contain metalogical or high-impedance values.

b) Input data may only contain ‘H’ and ‘L’ on inputs that are converted to ‘1’ and ‘0’, respectively.

c) For combinational verification, input data must change far enough in advance of sensing times to
allow transient delays to have settled.

d) Clock and/or input data must change after enough time of the asynchronous set/reset signals going
from active to inactive to fulfill the setup/hold times of the sequential elements in the design.
Copyright © 2004 IEEE. All rights reserved. 5

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
e) For edge-sensitive designs, primary inputs of the design must change far enough in advance for the
edge-sensitive storage element input data to fulfill the setup times with respect to the active clock
edge. Also, the input data must remain stable for long enough to fulfill the hold times with respect to
the active clock edge.

f) For level-sensitive designs, primary inputs of the design must change far enough in advance for the
level-sensitive storage element input data to fulfill the setup times. Also, the input data must remain
stable for long enough to fulfill the hold times.

NOTE—A synthesis tool may define metalogical or high-impedance values appearing on primary outputs in one model
as equivalent to logical values in the other model. For this reason, the input stimulus may need to reset internal storage
elements to specific logical values before the outputs of both models are compared for logical values.

5.1 Combinational verification

To verify combinational logic, the input stimulus shall be applied first. Sufficient time shall be provided for
the design to settle, and then the outputs examined. To verify the combinational logic portion of a model, the
following sequence of events shall be done repeatedly for each input stimulus application:

a) Apply input stimulus

b) Wait for data to settle

c) Check outputs

Each application of inputs shall include enough delay so that the transient delays and timeout clause delays
have been exceeded. A model is not in compliance with this standard if it is possible for outputs or internal
nodes of the combinational model never to reach a steady state (i.e., oscillatory behavior).

Example:
 A <= not A after 5 ns; -- oscillatory behavior, noncompliant

5.2 Sequential verification

The general scheme consists of applying inputs periodically and then comparing the outputs just before the
next set of inputs is applied. Sequential models contain edge-sensitive and/or level-sensitive storage ele-
ments. The sequential design must be reset, if required, before verification can begin.

The verification of designs containing edge-sensitive or level-sensitive storage elements is as follows:

a) Edge-sensitive models: The same sequence of tasks as used for combinatorial verification shall be
performed during verification: Change the inputs, compute the results, and compare the outputs.
However, for sequential verification, these tasks shall be synchronized with one of the inputs, which
is a clock. The inputs must change in an appropriate order with respect to the input that is treated as
a clock, and their consequences must be allowed to settle prior to comparison. Comparison might
best be done just before the active clock edge, and the non-clock inputs can change relatively soon
after the edge. The circuit then has the rest of the clock period to compute the new results before
they are stored at the next clock edge. The period of the clock generated by the stimulus shall be suf-
ficient to allow the input and output signals to settle.

b) Level-sensitive models: These designs are generally less predictable than edge-sensitive models due
to the asynchronous nature of the signal interactions. Verification of synthesized results depends on
the application. With level-sensitive storage elements, a general rule is that data inputs should be
stable before enables go inactive (i.e., latch) and comparing of outputs is best done after enables are
inactive (i.e., latched) and combinational delays have settled. A level-sensitive model in which it is
possible, in the absence of further changes to the inputs of the model, for one or more internal values
or outputs of the model never to reach a steady state (oscillatory behavior) is not in compliance with
this standard.
6 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
6. Modeling hardware elements

This clause specifies styles for modeling hardware elements such as edge-sensitive storage elements, level-
sensitive storage elements, three-state elements, and combinational elements.

This clause does not limit the optimizations that can be performed on a VHDL model. The scope of optimi-
zations that may be performed by a synthesis tool depends on the tool itself. The hardware modeling styles
specified in this clause do not take into account any optimizations or transformations. A specific tool may
perform optimizations; this may result in removal of redundant or unused logic from the final netlist. This
shall NOT be taken as a violation of this standard provided the synthesized netlist has the same functionality
as the input model, as characterized in Clause 5.

6.1 Edge-sensitive sequential logic

6.1.1 Clock signal type

The allowed types for clock signals shall be BIT, STD_ULOGIC and their subtypes (e.g., STD_LOGIC).
Only the values ‘0’ and ‘1’ from these types shall be used in expressions representing clock levels and clock
edges (see 6.1.2).

Scalar elements of arrays of the above types shall be supported as clock signals.

Example:

signal BUS8: std_logic_vector(7 downto 0);

 ...

 process (BUS8(0))

 begin

 if BUS8(0) = '1' and BUS8(0)'EVENT then

 ...

 ...

 -- BUS8(0) is a scalar element used as a clock signal.

6.1.2 Clock edge specification

The general syntax for specifying an edge of a clock shall be the following:

 clock_edge ::=

 RISING_EDGE(clk_signal_name)

 | FALLING_EDGE(clk_signal_name)

 | clock_level and event_expr

 | event_expr and clock_level

clock_level ::= clk_signal_name = '0' | clk_signal_name = '1'

event_expr ::= clk_signal_name'EVENT | not clk_signal_name'STABLE

The RISING_EDGE and FALLING_EDGE functions are as declared by the package STD_LOGIC_1164 of
IEEE Std 1164-1993.
Copyright © 2004 IEEE. All rights reserved. 7

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
6.1.2.1 Rising (positive) edge clock

The following expressions shall represent a rising edge clock:

a) RISING_EDGE(clk_signal_name)

b) clk_signal_name = '1' and clk_signal_name'EVENT

c) clk_signal_name'EVENT and clk_signal_name = '1'

d) clk_signal_name = '1' and not clk_signal_name'STABLE

e) not clk_signal_name'STABLE and clk_signal_name = '1'

6.1.2.2 Falling (negative) edge clock

The following expressions shall represent a falling edge clock:

a) FALLING_EDGE(clk_signal_name)

b) clk_signal_name = '0' and clk_signal_name'EVENT

c) clk_signal_name'EVENT and clk_signal_name = '0'

d) clk_signal_name = '0' and not clk_signal_name'STABLE

e) not clk_signal_name'STABLE and clk_signal_name = '0'

6.1.3 Modeling edge-sensitive storage elements

An edge-sensitive storage element may be modeled either by a signal or variable that is updated at a clock
edge.

Definitions:

<sync_condition>. A <boolean_expression> with a <clock_edge> expression that only is TRUE when
<clock_edge> is TRUE.

<async_condition>. A <boolean_expression> without a <clock_edge> expression.

<sync_assignment>. An assignment to a signal or variable that is controlled explicitly by <clock_edge> in
all execution paths.

<async_assignment>. An assignment to a signal or variable that is not controlled by <clock_edge> in any
execution path.

To illustrate these definitions, here are two examples:

Example of <async_assignment>:
 SimpleEdgeModel: process: (clk, reset)

 begin

 if(rising_edge(clk) and reset = '0') then

 Q <= D; -- sync assignment

 elsif(reset = '1') then

 Q <= '0'; -- async assignment

 end if;

 end process;

In this example, the assignment Q <= '0' is controlled by reset = '1' but not by the <clock_edge> as
represented by rising_edge(clk). Notice that when reset is '1', rising_edge(clk) may be
TRUE or FALSE; therefore, the assignment in the elsif is asynchronous.
8 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
Example of <async_condition>:

 ComplexEdgeModel:

 process(clk, en, reset)

 begin

 if (en = '1' and rising_edge(clk))

 or (en = '1' and reset = '1') then

 if (reset = '1') then

 Q <= '0'; -- async assignment

 elsif (en = '1' and rising_edge(clk)) then -- sync condition

 Q <= D; -- sync assignment

 end if;

 end if ;

 end process ;

In this example, the <sync_condition> is the boolean expression “en = '1' and rising_edge(clk)”,
because it can be true only when the clock edge also is true. The <async_condition> is the boolean expres-
sion “en = '1' and reset = '1'” anded with reset = '1'”. With these controlling the execution
flow, the assignment, “Q <= '0'” is an <async_assignment> because it is executed when the
<async_condition> is true, and the assignment “Q <= D” is a <sync_assignment> because it is executed
when the <sync_condition> is true.

NOTE—An edge-sensitive storage element inferred for a variable may be eliminated during optimization if there exists
another edge-sensitive storage element with its same functionality.

6.1.3.1 Edge-sensitive storage from a process with sensitivity list and one clock

Edge-sensitive storage shall be modeled for a signal or variable assigned inside a process with sensitivity list
when all of the following apply:

a) The signal or variable has a <sync_assignment>.

b) There is no execution path in which the value update from a <sync_assignment> overrides the value
update from an <async_assignment> unless the <async_assignment> is an assignment to itself.

c) It is possible to statically enumerate all execution paths to the signal or variable assignments.

d) The process sensitivity list includes the clock and any signal controlling an <async_assignment>.

e) The <clock_edge> is present in the conditions only, and the <clock_edge> always expresses the
same edge of the same clock signal.

f) For a variable, the value written by a given clock edge is read during a subsequent clock edge.

NOTES

1—Except for a clock signal, signals read in a <sync_assignment> or signals controlling a <sync_assignment> are not
required to be on the process sensitivity list.

2—In rule b) above, an <async_assignment> of a signal to itself is an exception because self-assignment retains the pre-
vious value, allowing a future, newly clocked <sync_assignment> value to replace a definite previous value. This
specific kind of <async_assignment> thus merely continues the storage state previously established; it has no effect on
any stored value, so overriding it makes no difference.

3—The <clock_edge> may be in a sequential procedure.
Copyright © 2004 IEEE. All rights reserved. 9

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
Example 1: Storage may be assigned in multiple statements in a process.
 TwoReg : process(clk)

 begin

 if rising_edge(clk) then

 Q1 <= D1;

 Q2 <= D2;

 end if;

 end process;

Example 2: Multiple statements in a process, with a reset.
 TwoRegReset : process(clk, reset)

 begin

 if rising_edge(clk) then

 Q1 <= D1;

 Q2 <= D2;

 end if;

 if reset = '1' then

 Q1 <= '0';

 end if;

 end process;

Example 3: A signal (or variable) may be updated with multiple <clock_edge> conditions on the same edge
of the clock.
 EnableEdgeProc : process(clk, reset)

 begin

 if reset = '1'

 then Q <= '0';

 else

 case sel is

 when '0' => if rising_edge(clk) then Q <= D0; end if;

 when '1' => if rising_edge(clk) then Q <= D1; end if;

 when others => Q <= '0';

 end case;

 end if;

 end process;

Example 4: More complicated multiple <clock_edge> conditions.
 -- clk reset e1 e2 || Q

 --

 -- * 1 * * || 0

 -- rise 0 1 * || D11

 -- !rise 0 1 * || hold ## <clock_edge> OK as per rule b.

 -- rise 0 0 1 || D12

 -- !rise 0 0 1 || hold ## <clock_edge> OK as per rule b.

 multiEnableEdgeProc : process(clk, reset)

 begin

 if reset = '1' then

 Q <= '0';

 elsif e1 = '1' and rising_edge(clk) then
10 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
 Q <= D11;

 elsif e2 = '1' and rising_edge(clk) then

 Q <= D12;

 end if;

 end process;

Example 5: Async and sync assignments controlled by complicated boolean expressions.

 RegProc5 : process(clk, reset)

 begin

 if ((en = '1' and rising_edge(clk)) or reset = '1') then

 if (reset = '1') then

 Q <= '0'; -- async assignment.

 elsif (en = '1' and rising_edge(clk)) then -- sync condition

 Q <= D; -- sync assignment

 end if;

 end if ;

 end process ;

Incorrect Example 6: Violates rule a). Is not a <sync_assignment> because it is not controlled by a
<clock_edge> in all execution paths.

 IllegalRegProc6 : process(clk, reset)

 begin

 if (rising_edge(clk) or reset = '1') then

 if (reset = '1') then

 Q <= '0';

 else

 Q <= D;

 end if;

 end if ;

 end process ;

Example 7: Sequential statements are allowed in a process outside the statement defining the edge-sensitive
storage element(s).

ComboResetDFF:

 process (clock, reset1, reset2, set, async_preload, A, Q)

 variable RESET : std_logic;

 begin

 RESET := reset1 or reset2; -- Outside the edge statement

 if RESET = '1' then

 Q <= '0';

 elsif set = '1' then

 Q <= '1';

 elsif async_preload = '1' then

 Q <= A;

 elsif rising_edge(clock) then

 Q <= D;

 end if;

 QBAR <= not Q; -- Outside the edge statement

 end process;
Copyright © 2004 IEEE. All rights reserved. 11

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
6.1.3.2 Edge-sensitive storage using a single wait statement

Assume the wait statement to be one of the following:

a) Wait statement with explicit clock edge:

 1) wait until [<async_condition> or] <sync_condition>;

 2) wait on <async_signals>, <clock_signal> [, <sync_signals>]

 until <async_condition> or <sync_condition>;

 3) wait on <clock_signal> [, <sync_signals>]

 until <sync_condition>;

where
 <async_condition> is defined in 6.1.3.

 <sync_condition> is defined in 6.1.3.

 <async_signals> is a sensitivity list with signals present

 in the <async_condition>.

 <clock_signal> is a sensitivity list with clock signal present

 in the <clock_edge>.

 <sync_signals> is a sensitivity list with signals present

 in the <sync_condition> excluding the <clock_signal>.

 <clock_edge> is defined in 6.1.2.

b) Wait statement with implicit clock edge:

 1) wait until <clock_level> ;

 2) wait on <clock_level_signal> until <clock_level_expr>;

where
 <clock_level_signal> ::= sensitivity list with clock signal present

 in the <clock_level>.

 <clock_level> ::= signal_name = '0' | signal_name = '1'.

 <clock_level_expr> ::= <boolean_expression> with <clock_level>, which

 shall be TRUE only when <clock_level> is TRUE.

c) Wait statement without clock edge: This includes forms of wait statement from either item a) or
item b) above in 6.1.3.2, in which the clock edge is not specified either explicitly or implicitly.

 1) wait on <sensitivity_list> ;

 2) wait until <condition> ;

 3) wait on <sensitivity_list> until <condition> ;

An if statement following one of these wait statements must have <clock_edge> in the condition.

Edge-sensitive storage shall be modeled for a signal or variable, assigned inside a process with wait state-
ment, when an assumption above is fulfilled; and, in addition:

a) The wait statement is the first or last statement of the process

b) The process with wait statement can be transformed to a process with “wait on <sensitivity_list>”.
The resulting process with “wait on <sensitivity_list>” must adhere to the rules in 6.1.3.1.

The transformation is described as follows:

T1. A wait statement describing an implicit clock edge model [b) above] is represented as an explicit
clock edge model (A above). This can be achieved by replacing “clk_signal_name = '0'” with
falling_edge(clk_signal_name), or replacing “clk_signal_name = '1'” with
rising_edge(clk_signal_name).
12 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
T2. A wait statement of the form, “wait until <condition>”, is transformed to an equivalent
wait statement of the form, “wait on <sensitivity_list> until <condition>”.

T3. After these alterations, the “wait on <sensitivity_list> until <condition>” state-
ment is transformed to an equivalent “wait on <sensitivity_list>” as follows:

 process

 <process_declarative_part>

 begin

 wait on <sensitivity_list> until <condition>;

 <sequence_of_statements>;

 end process;

transforms to this equivalent process with “wait on <sensitivity_list>”:

process

<process_declarative_part >

 begin

 wait on <sensitivity_list>;

 if <condition> then

 <sequence_of_statements>;

 end if;

 end process;

Example: Showing the transformation to wait on
 process

 begin

 wait on SET, reset, clock

 until SET = '1' or reset = '1' or rising_edge(clock);

 if reset = '1' then

 Q <= '0';

 elsif SET = '1' then

 Q <= '1';

 elsif rising_edge(clock) then

 Q <= D;

 end if;

 end process;

Using the transformations described above, the goal is the following equivalent process with only a
“wait on <condition>” statement:

 process

 begin

 wait on <sensitivity_list> ;

 <statement_list>

 end process ;

This is accomplished as follows:

 process

 begin

 wait on SET, reset, clock ;

 if SET = '1' or reset = '1' or rising_edge(clock) then

 if reset = '1' then

 Q <= '0';

 elsif SET = '1' then

 Q <= '1';

 elsif rising_edge(clock) then
Copyright © 2004 IEEE. All rights reserved. 13

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
 Q <= D;

 end if;

 end if;

 end process;

6.1.3.3 Edge-sensitive storage with one or more clocks

Multiple if statements with different clock edge conditions may be used to update a signal or variable inside
a process. The process may have a sensitivity list, or it may have an equivalent wait on as its first or last
statement.

The clock edge conditions shall be mutually exclusive.

For each clock edge expression, when the remaining clock edge expressions are replaced by FALSE in all
statements of the process, the transformed process must fulfill the conditions of 6.1.3.1 or 6.1.3.2.

The signal in the first clock edge expression (textually) shall be taken as the functional clock.

NOTES

1—It is recommended to have simulation specific code enclosed within RTL_SYNTHESIS OFF/ON pragmas to check
the mutual exclusivity.

2—The determination of the functional clock is made on a process-by-process basis; the intended functional clock has to
be coded first in each process.

Example 1: Two different clock signals
 library IEEE;

 use IEEE.Std_Logic_1164.all;

 entity multi_clock_ff_example is

 port(reset, clk1, clk2,

 data1, data2 : in Std_Logic;

 Q : out Std_Logic);

 end;

 architecture RTL of multi_clock_ff_example is

 begin

 -- Process sensitive to controlling signals reset, clk1 and clk2

 process(reset, clk1, clk2)

 begin

 if reset = '1' then

 Q <= '0' ;

 elsif rising_edge(clk1) then

 Q <= data1 ;

 elsif rising_edge(clk2) then

 Q <= data2 ;

 end if ;

 -- RTL_SYNTHESIS OFF

 if rising_edge(clk1) and rising_edge(clk2) then

 assert (TRUE) report

"Warning: Scan and functional clock are active together"
 severity Warning ;

 Q <= 'X' ;
14 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
 end if ;

 -- RTL_SYNTHESIS ON

 end process;

 end RTL;

Example 2: Two different edges of one clock signal
 DualEdge_Proc: process (Clk, Reset) is

 begin

 if Reset = '1' then

 Q <= (others => '0');

 elsif rising_edge(Clk) then

 Q <= D4Rise;

 elsif falling_edge(Clk) then

 Q <= D4Fall;

 end if;

 end process DualEdge_Proc;

6.1.3.4 Edge-sensitive storage with multiple waits

When modeling edge-sensitive storage elements using multiple wait statements, the following rules shall
apply:

a) The wait statement shall be modeled according to 6.1.3.2, item a) or item b).

NOTE–The wait may reside in a sequential procedure.

b) If one wait statement uses an <async_condition>, all wait statements shall use the same, identical
<async_condition>.

c) Each wait statement shall specify the same clock edge of a single clock.

d) Statements under each wait statement to handle asynchronous condition (i.e., signals from
<async_condition>) shall be the same.

NOTE–An exit or next following each wait may be used to implement a full reset of a state machine.

e) If simulation semantics require that the value of a variable being read is written on the previous
<clock_edge>, edge-sensitive storage shall be modeled for it.

Example 1: A multicycle data path element:
 library ieee;

 use ieee.std_logic_1164.all;

 use ieee.numeric_std.all;

 Entity Mult is

 port (

 clk : in std_logic;

 start : in std_logic;

 done : out std_logic;

 A, B : in unsigned (3 downto 0);

 Y : out unsigned (7 downto 0)

);

 end Mult;

 --
Copyright © 2004 IEEE. All rights reserved. 15

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
 Architecture ImplicitFSM of Mult is

 signal intY : unsigned(7 downto 0);

 begin

 MultProc : process

 begin

 wait until clk = '1';

 if start = '1' then

 done <= '0';

 intY <= (others => '0');

 for i in A'range

 loop

 wait until clk = '1';

 if A(i) = '1' then

 intY <= (intY(6 downto 0) & '0') + B ;

 else

 intY <= (intY(6 downto 0) & '0') ;

 end if;

 end loop;

 done <= '1';

 end if;

 end process;

 Y <= intY ; -- final state Y = A * B

 end ;

Example 2: Asynchronous reset modeling.
 genericStateMachineProc: process

 begin

 RESET_LOOP: loop

 if reset = '1' then -- reset/init state

 Y <= '0';

 X <= '0';

 end if;

 wait until reset = '1' or rising_edge(clk);

 next RESET_LOOP when (reset = '1');

 X <= A; -- state one

 wait until reset = '1' or rising_edge(clk);

 next RESET_LOOP when (reset = '1');

 Y <= B; -- state two

 wait until reset = '1' or rising_edge(clk);

 end loop RESET_LOOP;

 end process;
16 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
Example 3: Serial transmission modeling.

 --

 UartTxFunction : Process

 --

 begin

 TopLoop : loop

 if (nReset = '0') then

 SerialDataOut <= '1' ;

 TxRdyReg <= '1' ;

 end if ;

 wait until nReset = '0' or

 (rising_edge(UartTxClk) and DataRdy = '1') ;

 next TopLoop when nReset = '0' ;

 SerialDataOut <= '0';

 TxRdyReg <= '0';

 -- Send 8 Data Bits

 for i in 0 to 7 loop

 wait until nReset = '0' or rising_edge(UartTxClk) ;

 next TopLoop when nReset = '0';

 SerialDataOut <= DataReg(i) ;

 TxRdyReg <= '0' ;

 end loop ;

 -- Send Parity Bit

 wait until nReset = '0' or rising_edge(UartTxClk) ;

 next TopLoop when nReset = '0' ;

 SerialDataOut <=

 DataReg(0) xor DataReg(1) xor DataReg(2) xor

 DataReg(3) xor DataReg(4) xor DataReg(5) xor

 DataReg(6) xor DataReg(7) ;

 TxRdyReg <= '0';

 -- Send Stop Bit

 wait until nReset = '0' or rising_edge(UartTxClk) ;

 next TopLoop when nReset = '0';

 SerialDataOut <= '1' ;

 TxRdyReg <= '1' ;

 end loop ;

 end process ;

6.1.3.5 Edge-sensitive storage using concurrent signal assignment statements

A concurrent conditional signal assignment statement may be used to model an edge-sensitive storage ele-
ment provided that the assignment can be mapped to a process that adheres to the rules in 6.1.3.1.
Copyright © 2004 IEEE. All rights reserved. 17

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
Example:

COND_SIG_ASSGN: Q <= '0' when RESET = '1' else

'1' when SET = '1' else

 A when ASYNC_LOAD = '1' else

 D when CLOCK'EVENT and CLOCK = '1';

6.1.3.6 Edge-sensitive storage using a guarded block

A signal assigned in a guarded block shall model edge-sensitive storage if the equivalent process in the
block fulfills the rules in 6.1.3.1 and the target signal is declared of kind register. The guard expression must
be in the following form:

 <guard_exp> ::= [<async_condition> or]<guard_sync_condition>

 <guard_clk_edge> ::= not <clock_signal>'stable and <clock_signal> = '0'

 | not <clock_signal>'stable and <clock_signal> = '1'

 <guard_sync_condition> ::= A <boolean_expression> which includes

 <guard_clk_edge> expression and which is TRUE

 only when <guard_clk_edge> is TRUE.

 <async_condition> ::= as defined in 6.1.3.

Example:

 architecture GUARD1 of top is

 signal Q : std_logic register;

 begin

 guardedRegBlock:

 block(set = '1' or reset = '1' or not clk'stable and clk = '1')

 begin

 Q <= guarded '1' when set = '1' else

'0' when reset = '1' else

 D ;

 end

 block;

 end;

6.1.3.7 Edge-sensitive storage from a concurrent subprogram

Edge-sensitive storage shall be modeled for a signal assigned in a concurrent procedure call that can be
mapped to a process adhering to the rules in 6.1.3.1.

NOTES

1—A wait in a concurrent subprogram should be used with care: Both the concurrent statement and the wait statement
have sensitivity lists.

2—Recursive subprograms are supported if and only if the subprogram can be statically inlined, as required in 8.2.2.
18 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
Example:

 architecture CONCUR_SUB of flipflop is

 procedure FF

 (signal clk,

 reset,

 D : in std_logic;

 signal Q : out std_logic

) is

 begin

 if reset = '1' then

 Q <= '0';

 elsif rising_edge(clk) then

 Q <= D;

 end if;

 end FF;

 signal reg1, reg2, reg3 : std_logic;

 begin

 FF(clk, reset, D, reg1);

 FF(clk, reset, reg1, reg2);

 FF(clk, reset, reg2, reg3);

 FF(clk, reset, reg3, Q);

 end;

6.2 Level-sensitive sequential logic

6.2.1 Modeling level-sensitive storage elements

6.2.1.1 Level-sensitive storage from process with sensitivity list

A level-sensitive storage element shall be modeled for a signal (or variable) when all the following apply:

a) The signal (or variable) has an explicit assignment.

b) The signal (or variable) does not have an execution path with <clock_edge> as a condition.

c) There are executions of the process that do not execute an explicit assignment (via an assignment
statement) to the signal (or variable).

By default, the effect of an identity assignment of the signal (or variable) shall be as though the assignment
was not present.

If the combinational attribute decorates the signal (or variable), combinational logic with feedback shall be
synthesized.

The process sensitivity list shall contain all signals read within the process statement.
Copyright © 2004 IEEE. All rights reserved. 19

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
NOTES

1—Variables declared in subprograms never model level-sensitive storage elements because variables declared in sub-
programs are always initialized in every call.

2—When a signal is assigned from within a procedure it shall have the same inference semantics as a signal assignment
from within a process.

3—Recursive procedure calls are allowed if and only if the procedure can be statically inlined, as required in 8.2.2.

4—It is recommended to avoid a modeling style in which the value of a signal or variable is read before its assignment.
This recommendation is meant to avoid the generation of unwanted storage elements.

Example 1:
 LEV_SENS_1: process (RESET, ENABLE, D)

 begin

 if RESET = '1' then

 Q <= '0';

 elsif ENABLE = '1' then

 Q <= D; -- Q is an incomplete asynchronous

 end if; -- assignment, so it models a level-sensitive

 -- storage element.

 end process;

Example 2:
 -- If attribute 'combinational' is FALSE on a process,

 -- identity assignment Q <= Q; causes synthesis of a latch.

 -- In this example, the value TRUE causes synthesis of combinational

 -- logic with feedback:

 use ieee.rtl_attributes.all; -- declaration of combinational

 attribute combinational of LEV_SENS_2:label is TRUE;

 LEV_SENS_2 : process (ENABLE, D)

 begin

 if ENABLE = '1' then

 Q <= D;

 else

 Q <= Q ;-- identity assignment. Same as Q <= unaffected;

 end if;

 end process;

Example 3:
 -- A process modeling both latch and flip-flop is supported.

 RegPlusLatProc: process(clk, reset, gEnable)

 variable gLatch : std_logic;

 begin

 if clk = '0' then

 gLatch := gEnable;

 end if;

 if reset = '1' then

 Q <= '0';

 elsif gLatch = '1' and rising_edge(clk) then

 Q <= D;

 end if;

 end process;
20 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
Example 4:
-- Again, if attribute 'combinational' is FALSE on a process,

-- identity assignment 'Q_TEMP := Q_TEMP;' is replaced by null statement.

 use ieee.rtl_attributes.all;

 attribute combinational of LEV_SENS_4:label is FALSE ;

LEV_SENS_4 : process (ENABLE , D)

 variable Q_TEMP : BIT ;

 begin

 if ENABLE = '1' then

 Q_TEMP := D;

 else

 Q_TEMP := Q_TEMP ; -- identity assignment

 end if;

 Q <= Q_TEMP ;

 end process;

Example 5: Inferred latch, perhaps as part of a scan chain
 -- Signal Q has an initial value in its declaration

 LEV_SENS_5 : process (enable, Q)

 begin

 if enable = '1' then

 Q <= Q ;

 end if;

 end process;

Example 6:
 -- Ram element as level-sensitive storage is supported.

 RAM_WRITE : process (WDE,D,ADDR)

 begin

 if WDE = '1' then

 myMem(ADDR) <= D;

 end if;

 end process;

 Q <= myMem(ADDR);

6.2.1.2 Level-sensitive storage from concurrent signal assignment

A level-sensitive storage element shall be modeled for a signal that is assigned in a concurrent signal assign-
ment statement that can be mapped to a process that adheres to the rules in 6.2.1.1.

Example 1:
 LEV_SENS_7: Q <= '0' when RESET='1' else -- This is identical

 D when ENABLE; -- to LEV_SENS_1 in 6.2.1.1,

 above.

Example 2:
 LEV_SENS_8: With ENABLE select

 Q <= D when '1',

 Q when others; --Identical to LEV_SENS_2 in 6.2.1.1,

 -- and models combinational logic.
Copyright © 2004 IEEE. All rights reserved. 21

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
Example 3:
 LEV_SENS_9: with ENABLE select

 Q <= D when '1',

 unaffected when others;

6.2.1.3 Level-sensitive storage from concurrent procedure call

A level-sensitive storage element shall be modeled for a signal assigned in a concurrent procedure call that
can be mapped to a process that adheres to the rules in 6.2.1.1.

Example:
 architecture CONCUR_SUB of level_sensitive

 is

 procedure latch(signal ENABLE, D :in bit;

 signal Q :out bit) is

 begin

 if ENABLE ='1' then Q <= D;

 end if;

 end;

 signal Q : bit;

 begin

 latch(a,sel,Q); --Concurrent procedure call which models a latch.

 end CONCUR_SUB;

6.2.1.4 Level-sensitive storage from guarded block

A level-sensitive storage element shall be modeled for a signal assigned in a guarded block that can be
mapped to a process fulfilling the rules in 6.2.1.1. The signal must be of kind register and a <clock_edge>
expression must not be used in the guard expression.

Each concurrent guarded signal assignment statement within such a guarded block must be equivalent to a
process statement fulfilling the rules in 6.2.1.1.

Example:
 entity latchEntity is

 port (clk1, dat1,

 dat2 : in Std_Logic;

 q1, q2 : out Std_Logic);

 end

 entity latchEntity;

 architecture latchArch of latchEntity is

 signal gq1, gq2 : Std_Logic register;

 begin

 d1Latch:

 block(clk1 = '1')

 begin

 gq1 <= guarded dat1;

 gq2 <= guarded dat1 and not dat2;

 end block
22 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
 d1Latch;

 q1 <= gq1;

 q2 <= gq2;

 end latchArch;

6.3 Three-state logic and busses

6.3.1 Three-state logic from ‘Z’ assignment

Three-state logic shall be modeled when an object or an element of the object is explicitly assigned the
IEEE Std 1164-1993 value ‘Z’. The target signal shall be of type Std_Logic.

The assignment to ‘Z’ shall be a conditional assignment.

For a signal that has multiple drivers, if one driver has an assignment to ‘Z’, every driver of that signal shall
be assigned a ‘Z’ under at least one condition.

NOTE—If an object is assigned a value ‘Z’ in a process that is edge-sensitive or level-sensitive, as described in 6.1 and
6.2, a synthesis tool may infer sequential elements on all inputs of the three-state logic.

6.3.2 Three-state logic from guard disconnect

Three-state logic may be modeled by a guarded signal assignment to a target signal of kind bus. When the
guard condition is false, the driver is removed (disconnected), which is equivalent to a high-impedance
value. The target signal shall be of type Std_Logic.

It shall be an error if any target signal of a guarded assignment is not declared explicitly of kind bus or reg-
ister. When declared of kind register, it shall be an error if the rules for sequential logic in 6.1.3.6 or 6.2.1.4
are not fulfilled.

Example:

 signal dout : Std_Logic bus; -- Kind "bus" yields three-state;
 -- kind "register" yields sequential logic
 signal flag : Std_Logic; -- (see 6.2.1.4).

 tri_state: block (en = '1')

 begin

 dout <= guarded din;

 flag <= en;

 end block;

6.4 Combinational logic

Any process that does not contain a clock edge or wait statement shall model either combinational logic or
level-sensitive sequential logic.

If there is always an assignment to a variable or signal in all possible executions of the process and all vari-
ables and signals have well-defined values, then the variable or signal models combinational logic.

a) If the variable or signal is updated before it is read in all executions of a process, then it shall model
combinational logic.

b) If a variable or signal is read before it is updated, then it may model combinational logic.

For combinational logic, the process sensitivity list shall list all signals read within the process statement.
Copyright © 2004 IEEE. All rights reserved. 23

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
6.5 ROM and RAM memories

6.5.1 Read-only memory (ROM)

An asynchronous ROM shall be modeled using one of the following styles:

a) Constant declaration of a memory array. A ROM instance may be generated when the memory
array is read from within a concurrent statement.

b) One-dimensional array with data in case statement.

The rom_block attribute shall be used to identify the variable that models the ROM. See 7.1.5.1 for this
attribute. If the logic_block attribute is used, then it shall imply that no ROM is to be inferred.

NOTES

1—The standard does not define how or in what form the ROM values are to be saved after synthesis when the
rom_block attribute is used.

2—In the absence of a rom_block or logic_block attribute, there is no constraint on the synthesized ROM
implementation.

6.5.1.1 ROM with constant array

The values of the ROM may be defined within a constant defined as an array of arrays, or as an array of inte-
gers or bits.

Example:

 library ieee;

 use ieee.std_logic_1164.all;

 use ieee.numeric_std.all;

 entity ROMconst is

 port (

 Z : out std_logic_vector(3 downto 0);

 A : in std_logic_vector(2 downto 0));

 end entity ROMconst;

 architecture RTL of ROMconst is

 type mem_typ is array(0 to 7) of std_logic_vector(3 downto 0);

 constant ROMINIT : mem_typ :=

 (0 => "1011",

 1 => "0001",

 2 => "0011",

 3 => "0010",

 4 => "1110",

 others => "0000");
 attribute rom_block: string; --OK not to use ieee.rtl_attributes package,

 --but the attribute must be defined

 --identically as in the package.

 attribute rom_block of ROMINIT : constant is "ROM_CELL_XYZ01";

 -- For ROM design with combinational logic use:

 -- attribute logic_block of ROMINIT : constant is TRUE;
24 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
 begin

 Z <= ROMINIT(TO_INTEGER(UNSIGNED(A)));

 end

 architecture RTL;

6.5.1.2 ROM with case statement

In this style, the data values of a ROM shall be defined within a case statement. All the values of the ROM
shall be defined within the case statement. The value assigned to each ROM address shall be a static expres-
sion. The object (signal or variable) attributed with the rom_block attribute models the ROM. The address of
the ROM shall be the same as the case expression. The ROM variable is the data. The case statement may
contain other assignments or statements that may or may not affect the ROM variable. However, all assign-
ments to the ROM object shall be done within only one case statement.

Example 1: ROM defined by a signal:

 library ieee;

 use ieee.std_logic_1164.all;

 use ieee.rtl_attributes.all; -- For declaration of rom_block attribute.

 entity ROM is

 port (

 Z : out std_logic_vector(3 downto 0);

 A : in std_logic_vector(2 downto 0));

 end entity ROM;

 architecture RTL of ROM is

 attribute rom_block of Z : signal is "ROM32Kx16";

 -- For ROM design with combinational logic use:

 -- attribute logic_block of Z : signal is TRUE;

 begin -- architecture RTL

 Rom_Proc : process (A) is

 begin -- process Rom_Proc

 case A is

 when "000" => Z <= "1011";

 when "001" => Z <= "0001";

 when "100" => Z <= "0011";

 when "110" => Z <= "0010";

 when "111" => Z <= "1110";

 when others => Z <= "0000";

 end case;

 end process Rom_Proc;

 end architecture RTL;
Copyright © 2004 IEEE. All rights reserved. 25

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
Example 2: ROM defined by a variable:
 architecture RTL of ROM is

 begin -- architecture RTL

 Rom_Proc : process (a)

 is

 variable rom : std_logic_vector(3 downto 0);

 attribute rom_block : string; -- OK not to use rtl_attributes.

 attribute rom_block of rom : variable is "ROM_CELL_XYZ01";
 -- For ROM design with combinational logic use:

 -- attribute logic_block of rom : variable is TRUE;

 begin -- process Rom_Proc

 case a is

 when "000" => rom := "1011";

 when "001" => rom := "0001";

 when "100" => rom := "0011";

 when "110" => rom := "0010";

 when "111" => rom := "1110";

 when others => rom := "0000";

 end case;

 Z <= rom;

 end process Rom_Proc;

 end architecture RTL;

NOTE—See 7.1 for additional information on the definition of the synthesis attributes.

6.5.2 Random-access memory (RAM)

A RAM shall be modeled using a signal or a variable that may have the attribute ram_block associated with
it. See 7.1.5.2 for this attribute. The values of the RAM may be defined within an array of arrays, or as an
array of integers or bits. A RAM element may either be modeled as an edge-sensitive storage element or as a
level-sensitive storage element. A RAM data value may be read synchronously or asynchronously.

NOTES

1—An attribute may be necessary to identify the RAM style. If combinational logic is desired instead of a RAM, use the
attribute logic_block instead of the attribute ram_block.

2—In the absence of a ram_block or logic_block attribute, there is no constraint on the synthesized implementation.

Example 1: A RAM with edge-sensitive write to storage elements
 library ieee;

 use ieee.std_logic_1164.all;

 use ieee.numeric_std.all;

 use ieee.rtl_attributes.all;

 entity ram is

 generic (

 WIDTH : Natural := 8;

 DEPTH : Natural := 16);

 port (

 q : out std_logic_vector(WIDTH-1 downto 0); -- Ram output
26 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
 d : in std_logic_vector(WIDTH-1 downto 0); -- Ram data input

 a : in std_logic_vector(DEPTH-1 downto 0); -- Address

 we : in std_logic; -- Write enable

 clk : in std_logic); -- system clock

 end entity ram;

architecture RTL of ram is

 type ram_typ is array(0 to 2**DEPTH-1) of

 std_logic_vector(WIDTH-1 downto 0);

 signal ram : ram_typ; -- ram element

 attribute ram_block of ram : signal is "RAM_CELL XYZ01";
 -- For RAM design with registers logic use:

 -- attribute logic_block of z : signal is TRUE;

 begin -- architecture RTL

 -- purpose: Synchronous Ram definition

 -- type : combinational

 Ram_Proc: process is

 begin -- process Ram_Proc

 wait until clk = '1';

 if we = '1' then

 ram(to_integer(unsigned(a))) <= d;

 end if;

 end process Ram_Proc;

 q <= ram(to_integer(unsigned(a)));

 end architecture RTL;

Example 2: A RAM with edge-sensitive read and write storage elements
 library ieee;

 use ieee.std_logic_1164.all;

 use ieee.numeric_std.all;

 use ieee.rtl_attributes.all;

 entity ram is

 generic (

 WIDTH : Natural := 8;

 DEPTH : Natural := 16);

 port (

 q : out std_logic_vector(WIDTH-1 downto 0); -- Ram output

 d : in std_logic_vector(WIDTH-1 downto 0); -- Ram data input

 a : in std_logic_vector(DEPTH-1 downto 0); -- Address

 we : in std_logic; -- Write enable

 re : in std_logic; -- Read enable

 clk : in std_logic); -- system clock

 end entity ram;

 --

 architecture RTL of ram is

 type ram_typ is array(0 to 2**DEPTH-1) of

 std_logic_vector(WIDTH-1 downto 0);

 constant Zvec : std_logic_vector(WIDTH-1 downto 0) := (others=>'Z');

 constant Xvec : std_logic_vector(WIDTH-1 downto 0) := (others=>'X');

 begin -- architecture RTL

 -- purpose: Synchronous Ram definition

 Ram_Proc: process is

 variable ram : ram_typ; -- ram element
Copyright © 2004 IEEE. All rights reserved. 27

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
 variable q_int : std_logic_vector(WIDTH-1 downto 0);

 attribute ram_block of ram : variable is "RAM_CELL XYZ01";
 -- For RAM design with register logic use

 -- attribute logic_block of ram : variable is TRUE;

begin -- process Ram_Proc

 wait until clk = '1';

 q_int <= ram(to_integer(unsigned(a)));

 if we = '1' then

 ram(to_integer(unsigned(a))) <= d;

 end if;

 end process Ram_Proc;

 --

 q <= q_int when '1'

 Zvec when '0'

 Xvec when others;

 end architecture RTL;

Example 3: A RAM with level-sensitive storage elements:
 library ieee;

 use ieee.std_logic_1164.all;

 use ieee.numeric_std.all;

 use ieee.rtl_attributes.all;

 entity ramlatch is

 generic (

 WIDTH : Natural := 8;

 DEPTH : Natural := 16);

 port (

 q : out std_logic_vector(WIDTH-1 downto 0); -- Ram output

 d : in std_logic_vector(WIDTH-1 downto 0); -- Ram data input

 a : in std_logic_vector(DEPTH-1 downto 0); -- Address

 we : in std_logic -- Write enable

);

 end entity ramlatch;

 architecture RTL of ramlatch is

 type ram_typ is array(0 to 2**DEPTH-1) of

 std_logic_vector(WIDTH-1 downto 0);

 signal ram : ram_typ; -- ram element

 attribute ram_block of ram : signal is ““; -- tech mapper decides

 -- For RAM design with register logic use:

 -- attribute logic_block of ram : signal is TRUE;

 begin -- architecture RTL

 -- purpose: Asynchronous Ram definition

 Ram_Proc: process (a, d, we) is

 begin -- process Ram_Proc

 if we = '1' then

 ram(to_integer(unsigned(a))) <= d;
28 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
 end if;

 end process Ram_Proc;

 q <= ram(to_integer(unsigned(a)));

 end architecture RTL;

7. Pragmas

Pragmas commonly are used to aid the synthesis tool in interpreting and implementing the VHDL model of
a design. Pragmas can take the form of attributes or metacomments.

7.1 Attributes

For the boolean-valued attributes described in this subclause, the effects refer to a value of TRUE; a boolean
FALSE value of the attribute shall result in behavior identical to the behavior when the attribute specifica-
tion has been omitted entirely.

User-defined attributes shall be ignored, except the synthesis-specific attributes in this subclause. All decla-
rations of the synthesis-specific attributes have been collected in Annex B. Any declaration in Annex B may
be located anywhere the user decides is appropriate; however, declarations copied from Annex B shall be
identical to those in that Annex.

7.1.1 Hierarchy control attributes

7.1.1.1 Keep attribute

Attribute name: KEEP

Attribute subtype: boolean

Decorated item: entity, component declaration, component instantiation, signal, variable

The KEEP attribute shall indicate to the synthesis tool that the decorated item shall be preserved, and not
deleted or replicated. When decorating an entity, component declaration, or component instantiation, the
internals of the decorated item shall not be subject to optimization. This attribute may be used to decorate
portions of the design that have been previously synthesized and are being reused in the current design.

When this attribute is found decorating an entity, a synthesis tool shall not alter the logic in any instance of
that entity. When this attribute is found decorating a component declaration, a synthesis tool shall not alter
the logic of any instance of that component. When this attribute is found decorating a component instance, a
synthesis tool shall not alter the logic for that instance.
Copyright © 2004 IEEE. All rights reserved. 29

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
7.1.1.2 Hierarchy creation attribute

Attribute name: CREATE_HIERARCHY

Attribute subtype: boolean

Decorated item: entity, block, subprogram, process

The attribute CREATE_HIERARCHY shall be used to indicate that the boundary around the decorated item
shall be maintained. An extra level of hierarchy may be created around the logic synthesized for the deco-
rated item; this level shall not be dissolved into that of the parent item.

7.1.1.3 Hierarchy dissolution attribute

Attribute name: DISSOLVE_HIERARCHY

Attribute subtype: boolean

Decorated item: entity, component declaration, component instantiation

The DISSOLVE_HIERARCHY attribute shall indicate to the synthesis tool that the design entity corre-
sponding to the item decorated by the attribute should be deleted and its logic instantiated in the parent of the
decorated item. This attribute can used to denote portions of the design that would better serve the design
goals by being dissolved into a higher hierarchical level.

When this attribute is used to decorate an entity, all instances of that entity shall be dissolved at the next
higher hierarchical level. When this attribute is used to decorate a component declaration, all instances of
that component shall be dissolved in their respective immediately enclosing design units. When this attribute
is used to decorate a component instance, only the named entity bound to that instance shall be dissolved.

NOTE—A hierarchy control attribute may not have any effect if by default a synthesis tool exhibits the attribute’s
behavior.

7.1.2 Register implementation attributes

7.1.2.1 Interconnection attributes

Definitions for the purpose of this subclause:

set logic: the logic that sets the output of a storage device to 1.

reset logic: the logic that sets the output of a storage device to 0.

7.1.2.1.1 For edge-sensitive storage elements

Attribute name: SYNC_SET_RESET

Attribute subtype: boolean

Decorated item: signal, process, block, entity

This attribute may be used to identify the set/reset logic of an edge-sensitive storage device so that the logic
can be connected directly to the set/reset pin(s) rather than being used as an input gating condition of the
edge-sensitive storage device. If the attribute is used to decorate a signal, then that signal shall be connected
30 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
directly to the set/reset terminal(s) of an edge-sensitive storage device provided that a matching device is
available in the synthesis library. If no matching device is available in the synthesis library, an error shall be
generated.

Signal constraints: If the attribute is used to decorate a signal, and that signal does not connect to a synchro-
nously reset or set, edge-sensitive storage device, a warning shall be generated. If the attribute is used to
decorate a signal, and that signal connects to an asynchronously reset, edge-sensitive storage device, an error
shall be generated. If both constraints are violated, both a warning and an error shall be generated.

If the attribute is used to decorate a process, block, or entity, the contained set/reset logic shall be connected
directly to set/reset terminals of edge-sensitive storage device(s), if such devices are available in the synthe-
sis library.

Block constraints: If the attribute is used to decorate a process, block, or entity, and that item does not imply
a synchronously reset or set, edge-sensitive storage device, a warning shall be generated. If the attribute is
used to decorate a process, block, or entity, and that item implies an asynchronously reset, edge-sensitive
storage device, an error shall be generated. If both constraints are violated, both a warning and an error shall
be generated.

NOTES

1—This attribute will not cause a synchronously reset edge-sensitve storage device to be converted to an asynchronously
reset edge-senstive storage device.

2—SYNC_SET_RESET does not imply one-hot; use the ONE_HOT attribute instead. If both set and reset are present,
to connect directly to the functional pins, either ONE_HOT must be specified also, or the device from the synthesis
library must have identical priority to the code; otherwise, simulation mismatches may result.

Example:

architecture EdgeSensitive of Register is

 attribute SYNC_SET_RESET : boolean; -- Or, use ieee.rtl_attributes.ALL.

 attribute SYNC_SET_RESET of reset : signal is true;

begin

 process(Clk)

 begin

 if rising_edge(Clk) then

 if reset = '1' then

 Q <= '1';

 else

 Q <= din;

 end if;

 end if;

 end process;

end architecture EdgeSensitive;
Copyright © 2004 IEEE. All rights reserved. 31

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
7.1.2.1.2 For level-sensitive storage elements

Attribute name: ASYNC_SET_RESET

Attribute subtype: boolean

Decorated item: signal, process, block, entity

This attribute may be used to identify the set/reset logic of a level-sensitive storage device so that the logic
can be connected directly to the asynchronous set/reset pin rather than being used as an input gating condi-
tion of the level-sensitive storage device.

If the attribute is used to decorate a signal, then that signal shall be connected directly to the set/reset termi-
nals of a level-sensitive storage device, provided that a matching device is available in the synthesis library.
If no matching device is available in the synthesis library, an error shall be generated by the synthesis tool.

Signal constraints: If the decorated signal does not connect to a level-sensitive storage device, a warning
shall be generated.

If the attribute is used to decorate a process, block, or entity, the described set/reset logic shall be connected
directly to the set/reset terminals of level-sensitive storage device(s).

Block constraints: If the decorated item does not contain a level-sensitive storage device, a warning shall be
generated. If no matching device is available in the synthesis library, an error shall be generated by the syn-
thesis tool.

NOTE—ASYNC_SET_RESET does not imply one-hot; use the ONE_HOT attribute instead. If both set and reset are
present, to connect directly to the functional pins, ONE_HOT must be specified, or the device from the synthesis library
must have identical priority to the code.

Example:

architecture LevelSensitive of Latch is

 attribute ASYNC_SET_RESET : boolean;

 attribute ASYNC_SET_RESET of reset : signal is true;

begin

 process(reset, enable)

 begin

 if reset = '1' then

 dout <= '1';

 elsif enable = '1' then

 dout <= din;

 end if;

 end process;

end architecture LevelSensitive;

Without the ASYNC_SET_RESET attribute, the synthesis tool is free to produce logic as shown in Figure 1.
32 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
Once synthesized, this result would be hard to optimize to a desirable implementation.

With the ASYNC_SET_RESET attribute, the result is as below in Figure 2. The synthesizer was not
allowed to use reset to gate enable or din.

7.1.2.2 Set/reset prioritization attributes

Attribute names: ONE_HOT, ONE_COLD

Attribute subtype: boolean

Decorated item: signal

The ONE_HOT attribute identifies a collection of one-bit signals that are active high and in which only one
signal in the collection is active at a given time. The ONE_COLD attribute identifies a collection of one-bit
signals that are active low and in which only one signal in the collection is active at a given time.

When this attribute is used to decorate one or more signals, the synthesis tool shall not implement priority
logic for these signals.

Example 1: Model of a flip-flop with set and reset.

 -- Model with inherent priority between the set and reset:

 architecture A of FLOP is

 begin

 P1: process(set, reset, clock)

 begin

 if rising_edge(clk) then

 if set = '1' then -- priority over reset

 dout <= '1';

 elsif reset = '1' then

Figure 1—Latch synthesis without ASYNC_SET_RESET

Figure 2—Latch synthesis with ASYNC_SET_RESET = TRUE
Copyright © 2004 IEEE. All rights reserved. 33

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
 dout <= '0';

 else

 dout <= din;

 end if;

 end if;

 end process;

 end architecture;

If this priority does not match the priority of the corresponding library cell part, then the implementation will
be as in Figure 3, with no attribute.

Notice that the implementation contains logic on reset to enforce set's priority over reset.

To remove the prioritizing logic, use the ONE_HOT attribute as shown below:

Example 2: Model of the Example 1 flip-flop without set priority:

 architecture A of FLOP is

 attribute ONE_HOT : boolean; -- Also in ieee.rtl_attributes pkg.

 attribute ONE_HOT of set, reset: signal is true;

 begin

 P1 : process(set, reset, clock)

 begin

 if rising_edge(clk) then

 if set = '1' then

 dout <= '1';

 elsif reset = '1' then

 dout <= '0';

 else

 dout <= din;

 end if;

 end if;

 end process;

 end architecture;

The new implementation is as in Figure 4.

NOTE—This attribute also is useful in models written with asynchronous set and reset.

Figure 3—Flip-flop synthesis with priority mismatch and without ONE_HOT
34 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
Below are some examples of the ONE_HOT attribute as used to decorate combinational logic:

Example 3: Conditional signal assignment:

 use ieee.rtl_attributes.ALL;

 entity HotEx3 is

 port (

 A, B, C, D : in std_logic_vector(7 downto 0) ;

 S1, S2, S3, S4 : in std_logic ;

 Y : out std_logic_vector(7 downto 0)

) ;

 end HotEx3;

 architecture Conditional3 of HotEx3 is

 attribute ONE_HOT of S1, S2, S3, S4 : signal is true ;

 begin

 Y <= A when S1 = '1' else

 B when S2 = '1' else

 C when S3 = '1' else

 D when S4 = '1' ;

 end Conditional3 ;

Example 4: Various combinational models:

use ieee.rtl_attributes.ALL;

entity Combo is

port (

 A, B, C, D : in std_logic_vector(7 downto 0) ;

 SEL : in std_logic_vector(3 downto 0) ;

 Y : out std_logic_vector(7 downto 0)

) ;

end Combo ;

architecture Conditional4 of Combo is

 attribute ONE_HOT of SEL : signal is true ;

begin

 Y <= A when SEL(0) = '1' else

 B when SEL(1) = '1' else

 C when SEL(2) = '1' else

Figure 4—Flip-flop synthesis with priority mismatch and ONE_HOT
Copyright © 2004 IEEE. All rights reserved. 35

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
 D when SEL(3) = '1' ;

end Conditional4 ;

architecture Select5 of Combo is

 attribute ONE_HOT of SEL : signal is true ;

begin

 with SEL select

 Y <= A when "0001",
 B when "0010",
 C when "0100",
 D when "1000",

"00000000" when "0000",
"XXXXXXXX" when others ;

end Select5 ;

architecture Select6 of Combo is

 attribute ONE_HOT of SEL : signal is true ;

begin

 with SEL select

 Y <= A when "0001",

 B when "0010",
 C when "0100",
 D when "1000",

"XXXXXXXX" when others ;
end Select6 ;

NOTE—Simulation mismatches may occur because of set/reset prioritization. It is the user's responsibility to ensure,
maybe by writing assertions, that the behavior of the decorated signals is as anticipated.

7.1.3 Mux-selection attribute

Attribute name: INFER_MUX

Attribute subtype: boolean

Decorated item: label (of case and selected assignment statements)

A synthesis tool may determine the implementation of a case statement that assigns to the same variable or
signal in all branches based on whether all possible values of the case expression are explicitly enumerated
(usually implemented as a multiplexer) or not (usually implemented using random logic). The mux-selection
attribute, when used to decorate the label of a case statement, shall direct the synthesis tool to implement the
case statement with a multiplexer, regardless of the number of explicitly enumerated choices for the case
expression.

In the example below, the signal action will be implemented by a multiplexer.

 process (STATUS)

 attribute INFER_MUX : boolean;

 attribute INFER_MUX of L1: label is true;

 begin

 L1: case STATUS is

 when GREEN => action := GO;
36 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
 when YELLOW => action := STEP_ON_THE_GAS;

 when others => action := STOP;

 end case;

 end process;

The following example illustrates the use of the INFER_MUX attribute with a selected assignment
statement:

 architecture A of TRAFFIC_LIGHT is

 attribute INFER_MUX : boolean;

 attribute INFER_MUX of L1: label is true;

 begin

 L1: with STATUS select

 action <= GO when GREEN,

 STEP_ON_GAS when YELLOW,

 STOP when others;

 end architecture;

7.1.4 Subprogram implementation attributes

Attribute name: IMPLEMENTATION, RETURN_PORT_NAME

Attribute subtype: string

Decorated item: procedure, function, label (of signal or variable assignment)

The IMPLEMENTATION attribute, when used to decorate a subprogram, shall indicate to the synthesis tool
that the subprogram is to be implemented with the entity or synthesis library cell specified in the value of the
attribute. The IMPLEMENTATION attribute allows the synthesis tool to ignore the body of the subprogram
entirely and insert the appropriate entity or technology cell in place of the subprogram call.

Consider the following example:

 procedure AND_OR_INVERT (A,B,C: in bit; signal O: out bit) is

 begin

 O <= not ((A and B) or C);

 end procedure;

 . . .

 AND_OR_INVERT(X, Y, Z, Q); -- procedure call

The logic for the procedure call would typically be implemented with a network of Boolean gates, as shown
in Figure 5.

Figure 5—And-Or-Invert synthesis without IMPLEMENTATION specified
Copyright © 2004 IEEE. All rights reserved. 37

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
Assuming that there is an entity technology cell, AOI, that implements the same functionality, the user can
direct the synthesis tool to use the same by using the IMPLEMENTATION attribute:

 procedure AND_OR_INVERT (A,B,C: in bit; signal O: out bit) is

 begin

 O <= not ((A and B) or C);

 end procedure;

 attribute IMPLEMENTATION of

 AND_OR_INVERT: procedure is "AOI";
 . . .

 AND_OR_INVERT(X, Y, Z, Q); -- procedure call

The synthesized design that uses the AOI cell is shown in Figure 6.

The port names and directions of the implementation cell shall be matched one-to-one to the formal parame-
ters of the subprogram.

NOTE—It is the user's responsibility to ensure that the functionality of the subprogram is consistent with the named
entity or technology cell that has been specified to implement it.

If a function is decorated with the IMPLEMENTATION attribute, the function also shall be decorated with
the RETURN_PORT_NAME attribute, the value of which shall be the name of the output port of the design
that communicates the return value computed by the function. In the example below, the function
AND_OR_INVERT is mapped to component AOI. The RETURN_PORT_NAME attribute specifies that
the value computed by the function is mapped to port O of the AOI component.

 function AND_OR_INVERT (A,B,C: in bit) return bit is

 begin

 return (not ((A and B) or C));

 end function;

 attribute IMPLEMENTATION of

 AND_OR_INVERT: function is "AOI";
 attribute RETURN_PORT_NAME of

 AND_OR_INVERT: function is "O";

 . . .

 Q <= AND_OR_INVERT(X, Y, Z); -- function call

When the IMPLEMENTATION attribute is used to decorate the label of an assignment statement, it speci-
fies the implementation of the operations in the right-hand side of the assignment statement. The operand
designators shall match by name the ports of the specified cell.

Figure 6—And-Or-Invert synthesis with IMPLEMENTATION
specifying an AOI from the library
38 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
For unary operations, the single operand shall be associated with the first port of the specified entity or syn-
thesis library cell, whereas the result of the operation shall be associated with the second port of the
specified entity or synthesis library cell.

For binary operations, the left and right operands shall be associated with the first and second ports, respec-
tively, of the specified entity or synthesis library cell, whereas the the result of the operation shall be
associated with the third port of the specified entity or synthesis library cell.

For complex expressions comprising multiple operations, the entire expression shall be implemented by the
single instance of the entity or synthesis library cell specified in the attribute value. In such cases, the oper-
ands of the expression are matched to the input ports in a left to right manner.

In the example below, the right-hand side of the assignment L1 comprising two binary and operations are
implemented by a single three-input technology cell “AND3”:

 signal O, A, B, C : boolean;

 attribute IMPLEMENTATION of L1 : label is "AND3";

 ...

 L1 : O <= A and B and C;

It is an error if the specified entity or library cell is not in the target synthesis library. If the value of the
IMPLEMENTATION attribute is the empty string (“”), then the attribute may be ignored by the synthesis
tool. It is an error if specified entity or synthesis library cell does not have the same number of input ports as
the number of operands in the right-hand side expression, or it does not have exactly one output that repre-
sents the value computed for the expression.

7.1.5 Memory modeling attributes

The attribute value of ROM_BLOCK or RAM_BLOCK may be a string name or a null string. If the string is
nonnull, it shall be an error if the synthesis tool cannot find an exactly matching object in the synthesis
library. An exact match in this context means that the same default binding rules specified in
IEEE Std 1076-2002 for binding component and instance names is used. If the string is null, the synthesis
tool shall search for a usable object (rom or ram, respectively) matching the decorated item; if no match is
found, the tool shall issue a warning and then may synthesize the item as if the attribute (ROM_BLOCK or
RAM_BLOCK) was not present.

It is an error if a decorated item has more than one of RAM_BLOCK, ROM_BLOCK, and LOGIC_BLOCK
attributes.

7.1.5.1 ROM

Attribute name: ROM_BLOCK

Attribute subtype: string

Decorated item: constant, variable, signal

The attribute ROM_BLOCK shall indicate that the decorated item is to be implemented as a ROM. When
this attribute is used to decorate a variable or signal, then all the assignments to the variable or signal must
be static expressions. The value of the attribute shall indicate the name of a specific cell or module to be
used to implement the decorated item. See 6.5.1 for examples of the ROM_BLOCK attribute.
Copyright © 2004 IEEE. All rights reserved. 39

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
7.1.5.2 RAM

Attribute name: RAM_BLOCK

Attribute subtype: string

Decorated item: variable, signal

The attribute RAM_BLOCK shall indicate that the decorated item is to be implemented as a RAM. A non-
null value of the attribute shall indicate the name of a specific cell or module to be be used to implement the
decorated item. See 6.5.2 for examples of the ROM_BLOCK attribute.

7.1.5.3 Logic block

Attribute name: LOGIC_BLOCK

Attribute subtype: boolean

Decorated item: constant, variable, signal

The attribute LOGIC_BLOCK shall indicate that the decorated item is to be implemented either as random
logic (as opposed to a ROM implementation) or discrete sequential logic (as opposed to a RAM
implementation).

7.1.6 Combinational logic attribute

Attribute name: COMBINATIONAL

Attribute subtype: boolean

Decorated item: process, conditional signal assignment, selected assignment

The COMBINATIONAL attribute shall indicate to the synthesis tool that the decorated item implies only
combinational logic. Decoration by COMBINATIONAL of an object modeling sequential logic shall be an
error except in the one case of a latch model in which the feedback path is defined by identity statements;
such a latch shall be synthesized as combinational logic with a feedback path.

NOTE—When this attribute is TRUE, it represents the intent to prevent latches; so combinational logic with a feedback
path should be synthesized as a multiplexer instead.

Example:

 attribute COMBINATIONAL of P1: process is TRUE;

 P1 : process (ENABLE, D)

 begin

 if ENABLE = '1' then

 Q <= D;

 else

 Q <= Q ; -- Identity assignment for Q

 end if;

 end process;
40 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
In the example above, there will be a feedback path from Q to itself through a multiplexer. If the process
above is decorated by a COMBINATIONAL attribute with value FALSE, the synthesis tool shall treat the
identity assignment as a null statement and infer sequential logic (a latch in this case) from the process. See
6.2.1.1 for an example that uses the COMBINATIONAL attribute.

7.1.7 Gated clock attribute

Attribute name: GATED_CLOCK

Attribute subtype: boolean

Decorated item: signal, process

The GATED_CLOCK attribute shall indicate to the synthesis tool that the clock and the enable signal of the
inferred edge-sensitive sequential element shall be combined logically to obtain the gated clock. If used to
decorate a signal, the attribute shall be propagated to all ports connected to that signal. If used to decorate a
process, the attribute only shall apply to the clock signal synthesized within the scope of that process. The
resulting gated clock shall be supported both as a clock and as a data driver of all logic to which it is
connected.

Example 1: External gating

 -- Separate AND gate to create gated clock which

 -- is then distributed to the "clock" pin of a FF
 -- and to any other pin connected:

 use ieee.rtl_attributes.all; -- declaration of GATED_CLOCK

 attribute GATED_CLOCK of gclk : signal is true;

 gclk <= clk and enable ;

 process (gclk)

 begin

 if rising_edge(gclk) then

 data <= data_in ;

 end if ;

 end process ;

Example 2: Internal gating

 -- Implied usage of gated clock for FFs with an enable pin:

 use ieee.rtl_attributes.all; -- declaration of GATED_CLOCK

 attribute GATED_CLOCK of GATOR2 : label is true;

 GATOR2: process(clk)

 begin

 if rising_edge(clk) then

 if enable = '1' then

 data <= data_in ; -- clk becomes a gated clock

 end if ;

 end if ;

 end process ;
Copyright © 2004 IEEE. All rights reserved. 41

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
Example 3: Internal gating of several clocks
 use ieee.rtl_attributes.all; -- declaration of GATED_CLOCK

 attribute GATED_CLOCK of GATOR3 : label is true;

 GATOR3: process(clkHi, clkLo, enable)

 signal Andclock : bit;

 begin

 AndClock := clkHi and not clkLo;

 if rising_edge(clkHi) then -- clkHi becomes gated

 if enable = '1' then

 data(14 downto 8) <= data_in(14 downto 8);

 end if;

 end if;

 if falling_edge(clkLo) then

 if enable = '1' then -- clkLo becomes gated

 data(7 downto 0) <= data_in(7 downto 0);

 end if;

 end if;

 if rising_edge(Andclock) -- Andclock is not gated

 then data(15) <= '0';

 else data(15) <= '1';

 end if;

 end process;

Example 4: Combined internal and external gating of a clock

 use ieee.rtl_attributes.all; -- declaration of GATED_CLOCK

 attribute GATED_CLOCK of GATOR4 : label is true;

 attribute GATED_CLOCK of gclk4 : signal is true;

 gclk4 <= clk or enable; -- gclk4 is an external gated clock

 GATOR4: -- which drives other processes, too.

 process (gclk4)

 begin

 if rising_edge(gclk4) then

 if enable = '1' then

 data <= data_in ; -- gclk4 also an internal gated clock.

 end if ;

 end if ;

 end process;

7.1.8 Enumeration encoding attribute

Attribute name: ENUM_ENCODING

Attribute subtype: string

Decorated item: type, subtype

The value of this attribute shall specify the encoding of the enumeration type literals. The attribute value
shall be made up of tokens separated by one or more spaces. There shall be as many tokens as there are liter-
als in the enumeration type, with the first token corresponding to the first enumeration literal, the second
token corresponding to the second enumeration literal, and so on.
42 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
Each token shall be made up of a sequence of ‘0’ and ‘1’ characters. Character ‘0’ shall represent a logic 0
value and character ‘1’ shall represent a logic 1 value. Additionally, each token may optionally contain
underscore characters; these shall be used for enhancing readability and shall be ignored. All tokens shall be
composed of the same number of characters (ignoring the underscore characters). Given the following enu-
merated type declaration and attribute declaration:

 type <enumeration_type> is

 (<enum_lit1>, <enum_lit2>, ... <enum_litN>);

 attribute ENUM_ENCODING: STRING; -- Attribute declaration

The attribute specification defines the encoding for the enumeration literals as follows:

attribute ENUM_ENCODING of <enumeration_type>: type is

"[<spacer>]<token1><spacer><token2><spacer> ...

 <tokenN>[<spacer>]"; -- Attribute specification

Token <token1> specifies the encoding for <enum_lit1>, <token2> specifies the encoding for <enum_lit2>,
and so on. <spacer> represents one or more of the following ieee.standard.character values: HT, CR, LF, or
' '.

NOTE—Use of this attribute may lead to simulation mismatches, e.g., with use of relational operators.

Example:

 -- Example shows ENUM_ENCODING used to describe one-hot encoding:

 attribute ENUM_ENCODING: string;

 type COLOR is (RED, GREEN, BLUE, YELLOW, ORANGE);

 attribute ENUM_ENCODING of COLOR:

 type is "10000 01000 00100 00010 00001";

 -- Enumeration literal RED is encoded with the first value 10000,

 -- GREEN is encoded with the value 01000, and so on.

Other attributes or specifications to define encoding shall be ignored.

7.1.9 Finite state machine attribute

Attribute name: FSM_STATE

Attribute subtype: string

Decorated item: type, subtype, signal, variable

The FSM_STATE attribute shall explicitly identify the state vector for FSM extraction during synthesis.
The value of the attribute shall specify the encoding scheme to be used for encoding the state.
Copyright © 2004 IEEE. All rights reserved. 43

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
The value of this attribute for an FSM with N states shall be one of

— “BINARY”: state encoded as binary value with LOG2(N) bits

— “GRAY”: state encoded as a binary value with the restriction that exactly one bit changes during
state transition

— “ONE_HOT”: state encoded with N bits where each encoding has a single ‘1’

— “ONE_COLD”: state encoded with N bits where each encoding has a single ‘0’

— “AUTO”: state encoding selection is left to the synthesis tool

— “” : state encoding selection is left to the synthesis tool

— A string of the form specified for the ENUM_ENCODING attribute, if the decorated item is of an
enumeration type or subtype

Example:

 type STATES is (S1, S2, S3, S4);

 signal STATE1, STATE2, STATE3, STATE4 : STATES;

 attribute FSM_STATE of STATE1: signal is "BINARY";

 --a valid encoding is: S1 = "00", S2 = "01", S3 = "10", S4 = "11"

 attribute FSM_STATE of STATE2: signal is "GRAY";

 --a valid encoding is: S1 = "00", S2 = "01", S3 = "11", S4 = "10"

 --(assuming a sequential transition of S1 -> S2 -> S3 -> S4)

 attribute FSM_STATE of STATE3: signal is "ONE_HOT";

 --a valid encoding is: S1 = "0001", S2 = "0010", S3 = "0100",

 -- S4 = "1000"

 attribute FSM_STATE of STATE4: signal is "ONE_COLD";

 --a valid encoding is: S1 = "1110", S2 = "1101", S3 = "1011",

 -- S4 = "0111"

NOTE—In the special case in which the decorated signal is of an enumerated type, then the FSM_STATE directive can
be used in a manner similar to the the ENUM_ENCODING attribute (with the difference that the latter is applied to the
enumeration type). Such usage combines the identification of the state vector and a user-specified encoding in the same
attribute—no additional ENUM_ENCODING attribute is then required. In addition, it allows different finite state
machines with the same set of states but different transition sequences to have different state encodings.

Example:

 type STATES is (S1, S2, S3, S4);

 signal STATE : STATES;

 attribute FSM_STATE of STATE: signal is "0110 0111 0000 1010";

If the decorated signal or variable is of an enumerated type, then the FSM_STATE attribute shall take prece-
dence over any ENUM_ENCODING attribute specified for the enumerated type.
44 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
NOTE—Simulation mismatches may occur with the use of this attribute when a value other than binary encoding is
used.

7.1.10 Finite state machine completion attribute

Attribute name: FSM_COMPLETE

Attribute subtype: boolean

Attributed object: signal, variable, type, subtype

The FSM_COMPLETE attribute shall decorate an item that represents the state register of a finite-state
machine.

If the attribute value is TRUE, those states in the synthesized machine for which no transition is specified in
the VHDL source shall transition to the state specified by the VHDL default state assignment. The default
state assignment is the value that would be assigned to the state register if the process was executed with an
invalid or unused value of the state type.

NOTES

1—FSM_COMPLETE augments the state machine hardware with transitions that allow it to recover if an invalid or
unused state value occurs, as might happen because of a power glitch or single-event upset.

2—Typical ways to make a default state assignment are by the others clause of a case statement, the else clause of an if
statement, or by an initializing value unconditionally assigned to the state register.

It shall be an error if an item is decorated with the FSM_COMPLETE attribute, the attribute value is TRUE,
and there is not a unique default state assignment. It shall be an error if an item is decorated with the
FSM_COMPLETE attribute, the attribute value is TRUE, and the statemachine VHDL source defines
unreachable states.

NOTE—VHDL RTL and gate level simulations will match for all values of the state register in the VHDL.

Example:

 type StateType is (S0, S1, S2, S3, S4);

 signal state, next: StateType;

 attribute FSM_STATE of state : signal is

"0000 0011 0110 1100 1001" ;
 attribute FSM_COMPLETE of state : signal is TRUE;

 . . .

 StateProc : process

 begin

 wait until Clk = '1' ;

 if nReset = '1' then

 state <= S0

 else

 case state is

 when S0 => state <= S1;

 when S1 => state <= S2;

 when S2 => state <= S3;

 when S3 => state <= S4;
Copyright © 2004 IEEE. All rights reserved. 45

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
 when S4 => state <= S0;

 when others => state <= S0;

 end case;

 end if ;

 end process;

In the example above, the VHDL specification contains five state values: S0, S1, S2, S3, and S4.
FSM_STATE specifies the encoding to be a four bit array with S0 = 0000, S1 = 0011, S2 = 0110, S3 = 1100,
and S4 = 1001. The implementation contains 2**4 states = 16. There are 11 states in the implementation that
are not part of the VHDL specification. As FSM_COMPLETE is true, the transition for the 11 unused states
is to the state specified in the others clause.

NOTE—The use of both FSM_COMPLETE TRUE and FSM_STATE ONE_HOT can incur a significant amount of
logic to effect the recovery transitions. For a safe state machine, rather than using ONE_HOT, it is recommended to
specify enumerated values with a hamming distance of two between them (as shown in the example).

7.1.11 Buffering attribute

Attribute name: BUFFERED

Attribute subtype: string

Decorated item: signal

The BUFFERED attribute shall be used to identify signals requiring special or high drive buffers (such as
clock and reset). The value of the attribute shall identify the technology cell that shall be used to drive the
signal or it shall be one the following values:

— “HIGH_DRIVE”: Select a high drive buffer from the synthesis library

— “CLOCK_BUF”: Select a clock buffer from the synthesis library

— “RESET_BUF”: Select a reset buffer from the synthesis library

Example:

 attribute BUFFERED of MYCLK : signal is "CLKBUFx4";

In the example above, signal MYCLK wired to the input pin of the buffer cell CLKBUFx4, and all of the
elements that were originally driven by MYCLK, will be driven by the output pin of the clock buffer
CLKBUFx4.

The overall effect of the buffer insertion shall be noninverting. If an inverting buffer is specified by this
attribute, then additional inverting logic shall be wired to the input of the buffer specified so as not to change
the polarity of the signal.

NOTE—After placing the buffer, the synthesis tool is permitted to do any optimization permitted by the synthesis
library.

7.2 Metacomments

Two metacomments shall be provided for conditional synthesis control. They shall be

a) -- RTL_SYNTHESIS OFF (or, abbreviated, -- RTL_SYN OFF)

b) -- RTL_SYNTHESIS ON (or, abbreviated, -- RTL_SYN ON)
46 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
A synthesis tool shall ignore any VHDL code after an “RTL_SYNTHESIS OFF” metacomment and before
the first subsequent “RTL_SYNTHESIS ON” metacomment.

Metacomments differing only in the use of corresponding uppercase and lowercase letters shall be consid-
ered the same. Unabbreviated and abbreviated forms of these metacomments shall be considered the same.
Whitespace shall be allowed between the line-comment token “--” and the comment.

The source code as a whole, including ignored constructs, shall conform to IEEE Std 1076-2002. The source
code exclusive of constructs ignored because of the metacomments shall be compliant to the terms of this
standard.

NOTES

1—Care should be taken when using these metacomments to ensure that synthesis behavior accurately reflects simula-
tion behavior. Use of these metacomments may lead to simulation mismatches.

2—The interpretation of comments other than RTL_SYNTHESIS OFF and RTL_SYNTHESIS ON by a synthesis tool
is not compliant with this standard.

8. Syntax

NOTE—Subclause titles in this clause match those of IEEE Std 1076-2002.

8.1 Design entities and configurations

8.1.1 Entity declarations

entity_declaration ::=

 entity identifier is

 entity_header

 entity_declarative_part

 [begin

 entity_statement_part]

 end [entity] [entity_simple_name] ;

Supported:

— entity_declaration

— entity_declarative_part

— reserved word entity after reserved word end

Ignored:

— entity_statement_part
Copyright © 2004 IEEE. All rights reserved. 47

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
Example:

 library IEEE;

 use IEEE.std_Logic_1164.all;

 entity E is

 generic(DEPTH : Integer := 8);

 port (CLOCK : in std_logic;

 RESET : in std_logic;

 A : in std_logic_vector(7 downto 0);

 B : inout std_logic_vector(7 downto 0);

 C : out std_logic_vector(7 downto 0));

 end E;

8.1.1.1 Entity header

 entity_header ::=

 [formal_generic_clause]

 [formal_port_clause]

 generic_clause ::= generic(generic_list);

 port_clause ::= port(port_list);

Supported:

— entity_header

— generic_clause

— port_clause

a) Generics

 generic_list ::= generic_interface_list

Supported:

— generic_list.

b) Ports

 port_list ::= port_interface_list

Supported:

— port_list
48 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
8.1.1.2 Entity declarative part

 entity_declarative_part ::=

 { entity_declarative_item }

 entity_declarative_item ::

 subprogram_declaration

 | subprogram_body

 | type_declaration

 | subtype_declaration

 | constant_declaration

 | signal_declaration

 | shared_variable_declaration

 | file_declaration

 | alias_declaration

 | attribute_declaration

 | attribute_specification

 | disconnection_specification

 | use_clause

 | group_template_declaration

 | group_declaration

Supported:

— entity_declarative_part

— entity_declarative_item

Ignored:

— file_declaration

Not Supported:

— shared_variable_declaration

— disconnection_specification

— group_template_declaration

— group_declaration

8.1.1.3 Entity statement part

 entity_statement_part ::=

 { entity_statement }

 entity_statement ::=

 concurrent_assertion_statement

 | passive_concurrent_procedure_call

 | passive_process_statement

Ignored:

— entity_statement_part

— entity_statement
Copyright © 2004 IEEE. All rights reserved. 49

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
NOTE—The entity statement part describes passive behavior for simulation monitoring purposes. It cannot drive signals
in the architecture. It, therefore, has no effect on the behavior of the architecture.

8.1.2 Architecture bodies

 architecture_body ::=

 architecture identifier of entity_name is

 architecture_declarative_part

 begin

 architecture_statement_part

 end [architecture] [architecture_simple_name] ;

Supported:

— architecture_body

— Multiple architectures

— Reserved word architecture after reserved word end

Not Supported:

— Global signal interactions between synthesized architectures

8.1.2.1 Architecture declarative part

 architecture_declarative_part ::=

 { block_declarative_item }

 block_declarative_item ::=

 subprogram_declaration

 | subprogram_body

 | type_declaration

 | subtype_declaration

 | constant_declaration

 | signal_declaration

 | shared_variable_declaration

 | file_declaration

 | alias_declaration

 | component_declaration

 | attribute_declaration

 | attribute_specification

 | configuration_specification

 | disconnection_specification

 | use_clause

 | group_template_declaration

 | group_declaration

Supported:

— architecture_declarative_part

— block_declarative_item

Ignored:

— file_declaration
50 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
Not Supported:

— shared_variable_declaration

— disconnection_specification

— group_template_declaration

— group_declaration

8.1.2.2 Architecture statement part

 architecture_statement_part ::=

 { concurrent_statement }

Supported:

— architecture_statement_part, as discussed in 8.9

8.1.3 Configuration declaration

 configuration_declaration ::=

 configuration identifier of entity_name is

 configuration_declarative_part

 block_configuration

 end [configuration] [configuration_simple_name];

 configuration_declarative_part ::=

 { configuration_declarative_item }

 configuration_declarative_item ::=

 use_clause

 | attribute_specification

 | group_declaration

Supported:

— configuration_declaration

— configuration_declarative_part

— configuration_declarative_item

Not Supported:

— group_declaration

8.1.3.1 Block configuration

 block_configuration ::=

 for block_specification

 { use_clause }

 { configuration_item }

 end for ;

 block_specification ::=

 architecture_name

 | block_statement_label

 | generate_statement_label [(index_specification)]
Copyright © 2004 IEEE. All rights reserved. 51

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
 index_specification ::=

 discrete_range

 | static_expression

 configuration_item ::=

 block_configuration

 | component_configuration

Supported:

— block_configuration

— block_specification

— index_specification

— configuration_item

8.1.3.2 Component configuration

 component_configuration ::=

 for component_specification

 [binding_indication ;]

 [block_configuration]

 end for ;

Supported:

— component_configuration

8.2 Subprograms and packages

8.2.1 Subprogram declarations

 subprogram_declaration ::=

 subprogram_specification ;

 subprogram_specification ::=

 procedure designator [(formal_parameter_list)]

 | [pure | impure] function designator [(formal_parameter_list)]

 return type_mark

 designator ::= identifier | operator_symbol

 operator_symbol ::= string_literal

Supported:

— subprogram_declaration

— subprogram_specification

— designator

— operator_symbol
52 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
8.2.1.1 Formal parameters

 formal_parameter_list ::= parameter_interface_list

Supported:

— formal_parameter_list

A subprogram shall not assign to an index or a slice of an unconstrained out parameter unless the associated
actual parameter in each call to the subprogram is a static name. Synthesis shall use the default value as the
“tie” value if a formal parameter of mode in is left open.

a) Constant and variable parameters

Constant and variable parameters shall be supported.

b) Signal parameters

Signal parameters shall be supported.

c) File parameters

File parameters shall not be supported.

8.2.2 Subprogram bodies

 subprogram_body ::=

 subprogram_specification is

 subprogram_declarative_part

 begin

 subprogram_statement_part

 end [subprogram_kind] [designator] ;

 subprogram_declarative_part ::=

 { subprogram_declarative_item }

 subprogram_declarative_item ::=

 subprogram_declaration

 | subprogram_body

 | type_declaration

 | subtype_declaration

 | constant_declaration

 | variable_declaration

 | file_declaration

 | alias_declaration

 | attribute_declaration

 | attribute_specification

 | use_clause

 | group_template_declaration

 | group_declaration

 subprogram_statement_part ::=

 { sequential_statement }

 subprogram_kind ::= procedure | function
Copyright © 2004 IEEE. All rights reserved. 53

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
Supported:

— subprogram_body

— subprogram_declarative_part

— subprogram_declarative_item

— subprogram_statement_part

Ignored:

— file_declaration

Not Supported:

— group_template_declaration

— group_declaration

Subprogram recursion shall be supported when the number of recursions is bounded by a static value.

8.2.3 Subprogram overloading

8.2.3.1 Operator overloading

Operator overloading shall be supported.

a) Signatures

 signature ::= [[type_mark {, type_mark}] [return type_mark]]

Signatures shall be supported.

8.2.4 Resolution functions

The resolution function RESOLVED is supported in subtype STD_LOGIC. All other resolution functions
shall be ignored.

8.2.5 Package declarations

 package_declaration ::=

 package identifier is

 package_declarative_part

 end [package] [package_simple_name];

 package_declarative_part ::=

 { package_declarative_item }

 package_declarative_item ::=

 subprogram_declaration

 | type_declaration

 | subtype_declaration

 | constant_declaration

 | signal_declaration

 | shared_variable_declaration

 | file_declaration

 | alias_declaration

 | component_declaration
54 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
 | attribute_declaration

 | attribute_specification

 | disconnection_specification

 | use_clause

 | group_template_declaration

 | group_declaration

Supported:

— package_declaration

— package_declarative_part

— package_declarative_item

— keyword package after keyword end

Ignored:

— file_declaration

Not Supported:

— shared_variable_declaration

— disconnection_specification

— group_template_declaration

— group_declaration

Signal declarations shall have an initial value expression.

Furthermore, a signal declared in a package shall have no sources. A constant declaration shall include the
initial value expression; that is, deferred constants are not supported.

8.2.6 Package bodies

 package_body ::=

 package body package_simple_name is

 package_body_declarative_part

 end [package body] [package_simple_name] ;

 package_body_declarative_part ::=

 { package_body_declarative_item }

 package_body_declarative_item ::=

 subprogram_declaration

 | subprogram_body

 | type_declaration

 | subtype_declaration

 | constant_declaration

 | shared_variable_declaration

 | file_declaration

 | alias_declaration

 | use_clause

 | group_template_declaration

 | group_declaration
Copyright © 2004 IEEE. All rights reserved. 55

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
Supported:

— package_body

— package_body_declarative_part

— package_body_declarative_item

— keywords package body after keyword end

Ignored:

— file_declaration

Not Supported:

— shared_variable_declaration

— group_template_declaration

— group_declaration

8.3 Types

8.3.1 Scalar types

 scalar_type_definition ::=

 enumeration_type_definition

 | integer_type_definition

 | physical_type_definition

 | floating_type_definition

 range_constraint ::= range range

 range ::=

 range_attribute_name

 | simple_expression direction simple_expression

 direction ::= to | downto

Supported:

— scalar_type_definition

— range_constraint

— range

— direction

Ignored:

— floating_type_definition

Not Supported:

— physical_type_definition

Null ranges shall not be supported.
56 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
8.3.1.1 Enumeration types

 enumeration_type_definition ::=

 (enumeration_literal { , enumeration_literal })

 enumeration_literal ::= identifier | character_literal

Supported:

— enumeration_type_definition

— enumeration_literal

Elements of the following enumeration types (and their subtypes) shall be mapped to single bits as specified
by IEEE Std 1076.3-1997:

a) BIT and BOOLEAN

b) STD_ULOGIC

The synthesis tool may select a default mapping for elements of other enumeration types. The user may
override the default mapping by means of the ENUM_ENCODING attribute (see 7.1.8).

a) Predefined enumeration types

Supported:

— CHARACTER

Ignored:

— SEVERITY_LEVEL

Not Supported:

— FILE_OPEN_KIND

— FILE_OPEN_STATUS

8.3.1.2 Integer types

 integer_type_definition ::= range_constraint

Supported:

— integer_type_definition

It is recommended that a synthesis tool should convert a signal or variable that has an integer subtype indica-
tion to a corresponding vector of bits. If the range contains no negative values, the item should have an
unsigned binary representation. If the range contains one or more negative values, the item should have a
twos-complement implementation. The vector should have the smallest width consistent with these
representations.

The synthesis tool shall support integer types and positive, negative, and unconstrained (universal) integers
whose bounds lie within the range –2 147 483 648 to +2 147 483 647 inclusive (the range that successfully
maps 32 bit twos-complement numbers).

Subtypes NATURAL and POSITIVE are supported.

Integer ranges shall be synthesized as if the zero value is included.
Copyright © 2004 IEEE. All rights reserved. 57

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
Example: “INTEGER range 9 to 10” should be synthesized using an equivalent vector length of 4 bits, just
as if it had been defined with a subtype indication of “INTEGER range 0 to 15”.

8.3.1.3 Physical types

 physical_type_definition ::=

 range_constraint

 units

 primary_unit_declaration

 { secondary_unit_declaration }

 end units [physical_type_simple_name]

 primary_unit_declaration ::= identifier ;

 secondary_unit_declaration ::= identifier = physical_literal;

 physical_literal ::= [abstract_literal] unit_name

Ignored:

— physical_literal of type TIME within an ignored construct such as an after clause or in the initial-
value expression of a declaration of an object of type TIME

Not Supported:

— physical_type_definition

— physical_literal, except of type TIME and occurring where ignored

Physical objects and literals other than of the predefined physical type TIME shall not be supported.

Declarations of objects of type TIME shall be ignored. References to objects and literals of type TIME may
occur only within ignored constructs after clause.

8.3.1.4 Floating point types

 floating_type_definition ::= range_constraint

Ignored:

— floating_type_definition

Floating point type declarations shall be ignored. Reference to objects and literals of a floating point type
may occur only within ignored constructs, for example, after the after clause.

8.3.2 Composite types

 composite_type_definition ::=

 array_type_definition

 | record_type_definition

Supported:

— composite_type_definition
58 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
8.3.2.1 Array types

 array_type_definition ::=

 unconstrained_array_definition

 | constrained_array_definition

 unconstrained_array_definition ::=

 array (index_subtype_definition { , index_subtype_definition })

 of element_subtype_indication

 constrained_array_definition ::=

 array index_constraint of element_subtype_indication

 index_subtype_definition ::= type_mark range <>

 index_constraint ::= (discrete_range { , discrete_range })

 discrete_range ::= discrete_subtype_indication | range

 range ::= range_attribute_name |

 simple_expression direction simple_expression

Supported:

— array_type_definition

— unconstrained_array_definition

— constrained_array_definition

— index_subtype_definition

— index_constraint

— discrete_range

The bounds of a discrete range shall be specified directly or indirectly as static values belonging to an inte-
ger type. An element subtype indication shall denote either a subtype of an integer or enumeration type or a
one-dimensional vector of an enumeration type whose elements denote single bits.

Null ranges shall not be supported.

If a discrete range is specified using a discrete subtype indication, the discrete subtype indication shall
denote a subtype of an integer type.

A range shall comprise integer values.

a) Index constraints and discrete ranges

These shall be supported.

b) Predefined array types

Predefined array types shall be supported.
Copyright © 2004 IEEE. All rights reserved. 59

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
8.3.2.2 Record types

 record_type_definition ::=

 record

 element_declaration

 { element_declaration }

 end record [record_type_simple_name]

 element_declaration ::=

 identifier_list : element_subtype_definition;

 identifier_list ::= identifier { , identifier }

 element_subtype_definition ::= subtype_indication

Supported:

— record_type_definition

— element_declaration

— identifier_list

— element_subtype_definition

8.3.3 Access types

 access_type_definition ::= access subtype_indication

Ignored:

— access_type_definition

The use of objects of access type shall not be supported.

8.3.3.1 Incomplete type declarations

 incomplete_type_declaration ::= type identifier ;

Ignored:

— incomplete_type_declaration

8.3.3.2 Allocation and deallocation of objects

Allocation and deallocation shall not be supported.

8.3.4 File types

 file_type_definition ::= file of type_mark

Ignored:

— file_type_definition

Use of file objects (objects declared as belonging to a file type) shall not be supported.
60 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
8.3.4.1 File operations

Not Supported:

— File operations

8.4 Declarations

 declaration ::=

 type_declaration

 | subtype_declaration

 | object_declaration

 | interface_declaration

 | alias_declaration

 | architecture_body

 | attribute_declaration

 | component_declaration

 | group_template_declaration

 | group_declaration

 | entity_declaration

 | configuration_declaration

 | subprogram_declaration

 | package_declaration

 | primary_unit

Supported:

— declaration

Not Supported:

— group_template_declaration

— group_declaration

8.4.1 Type declarations

 type_declaration ::=

 full_type_declaration

 | incomplete_type_declaration

 full_type_declaration ::=

 type identifier is type_definition ;

 type_definition ::=

 scalar_type_definition

 | composite_type_definition

 | access_type_definition

 | file_type_definition

 | protected_type_definition

Supported:

— type_declaration

— full_type_declaration

— type_definition
Copyright © 2004 IEEE. All rights reserved. 61

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
Ignored:

— incomplete_type_declaration

— access_type_definition

— file_type_definition

Full type declarations containing access type definitions or file type definitions shall be ignored.

Not Supported:

— protected_type_definition

8.4.2 Subtype declarations

 subtype_declaration ::=

 subtype identifier is subtype_indication ;

 subtype_indication ::=

 [resolution_function_name] type_mark [constraint]

 type_mark ::=

 type_name

 | subtype_name

 constraint ::=

 range_constraint

 | index_constraint

Supported:

— subtype_declaration

— subtype_indication

— type_mark

— constraint

Ignored:

— User-defined resolution functions

8.4.3 Objects

8.4.3.1 Object declarations

 object_declaration ::=

 constant_declaration

 | signal_declaration

 | variable_declaration

 | file_declaration

Supported:

— object_declaration

Ignored:

— file_declaration
62 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
a) Constant declarations

 constant_declaration ::=

 constant identifier_list : subtype_indication [:= expression];

Supported:

— constant_declaration

Deferred constant declaration shall not be supported. That is, the expression shall be present in the constant
declaration.

b) Signal declarations

 signal_declaration ::=

 signal identifier_list :

 subtype_indication [signal_kind] [:= expression];

 signal_kind ::= register | bus

Supported:

— signal_declaration

— signal_kind

Ignored:

— expression

The initial value expression shall be ignored unless the declaration is in a package, where the declaration
shall have an initial value expression.

The subtype indication shall be a globally static type. An assignment to a signal declared in a package shall
not be supported.

c) Variable declarations

 variable_declaration ::=

 [shared] variable identifier_list :

 subtype_indication [:= expression];

Supported:

— variable_declaration

Ignored:

— expression

Not Supported:

— Reserved word shared

The reserved word shared shall not be supported. The initial value expression shall be ignored. The subtype
indication shall be a globally static type.

The use of access objects shall not be supported.

d) File declarations

 file_declaration ::=
Copyright © 2004 IEEE. All rights reserved. 63

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
 file identifier_list :

 subtype_indication [file_open_information] ;

 file_open_information ::=

 [open file_open_kind_expression] is file_logical_name

 file_logical_name ::= string_expression

Ignored:

— file_declaration

The use of file objects shall not be supported.

8.4.3.2 Interface declarations

 interface_declaration ::=

 interface_constant_declaration

 | interface_signal_declaration

 | interface_variable_declaration

 | interface_file_declaration

 interface_constant_declaration ::=

 [constant] identifier_list :

 [in] subtype_indication [:= static_expression]

 interface_signal_declaration ::=

 [signal] identifier_list : [mode] subtype_indication [bus]

 [:= static_expression]

 interface_variable_declaration ::=

 [variable] identifier_list : [mode] subtype_indication

 [:= static_expression]

 interface_file_declaration ::=

 file identifier_list : subtype_indication

 mode ::= in | out | inout | buffer | linkage

Supported:

— interface_declaration

— interface_constant_declaration

— interface_signal_declaration

— interface_variable_declaration

Ignored:

— static_expression (interface signal declarations and interface variable declarations).

Not Supported:

— interface_file_declaration

— mode linkage
64 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
The static expression shall be ignored in port interface lists and formal parameter lists.

Static expressions in interface constant declarations shall be supported.

a) Interface lists

 interface_list ::=

 interface_element {; interface_element}

 interface_element ::= interface_declaration

Supported:

— interface_list

— interface_element

b) Association lists

 association_list ::=

 association_element {, association_element}

 association_element ::=

 [formal_part =>] actual_part

 formal_part ::=

 formal_designator

 | function_name(formal_designator)

 | type_mark(formal_designator)

 formal_designator ::=

 generic_name

 | port_name

 | parameter_name

 actual_part ::=

 actual_designator

 | function_name(actual_designator)

 | type_mark(actual_designator)

 actual_designator ::=

 expression

 | signal_name

 | variable_name

 | file_name

 | open

Supported:

— association_list

— association_element

— formal_part

— formal_designator

— actual_part

— actual_designator
Copyright © 2004 IEEE. All rights reserved. 65

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
Not Supported:

— file_name

8.4.3.3 Alias declarations

 alias_declaration ::=

 alias alias_designator [: subtype_indication]

 is name [signature];

 alias_designator ::= identifier

 | character_literal | operator_symbol

Supported:

— alias_declaration

— alias_designator

8.4.4 Attribute declarations

 attribute_declaration ::=

 attribute identifier : type_mark ;

Supported:

— attribute_declaration

Ignored:

— User-defined attribute declarations other than those of the synthesis-specific attributes in this
standard

8.4.5 Component declarations

 component_declaration ::=

 component identifier [is]

 [local_generic_clause]

 [local_port_clause]

 end component [component_simple_name] ;

Supported:

— component_declaration

8.4.6 Group template declarations

 group_template_declaration ::=

 group identifier is (entity_class_entry_list) ;

 entity_class_entry_list ::=

 entity_class_entry {, entity_class_entry }

 entity_class_entry ::= entity_class [<>]
66 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
Not Supported:

— group_template_declaration

— entity_class_entry_list

— entity_class_entry

8.4.7 Group declarations

 group_declaration ::=

 group identifier : group_template_name(group_consituent_list);

 group_constituent_list ::= group_constituent {, group_constituent }

 group_constituent ::= name | character_literal

Not Supported:

— group_declaration

— group_constituent_list

— group_constituent

8.5 Specifications

8.5.1 Attribute specification

 attribute_specification ::=

 attribute attribute_designator

 of entity_specification is expression;

 entity_specification ::=

 entity_name_list : entity_class

 entity_class ::=

 entity | architecture | configuration

 | procedure | function | package

 | type | subtype | constant

 | signal | variable | component

 | label | literal | units

 | group | file

 entity_name_list ::=

 entity_designator {, entity_designator}

 | others

 | all

 entity_designator ::= entity_tag [signature]

 entity_tag ::= simple_name | character_literal | operator_symbol
Copyright © 2004 IEEE. All rights reserved. 67

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
Supported:

— attribute_specification

— entity_specification

— entity_class

— entity_name_list

— entity_designator

— entity_tag

Ignored:

— User-defined attribute declarations and their specifications, except those of the synthesis-specific
attributes of Clause 7

Not Supported:

— entity class group and file

— reading of names of user-defined attributes

8.5.2 Configuration specification

 configuration_specification ::=

 for component_specification binding_indication;

 component_specification ::=

 instantiation_list : component_name

 instantiation_list ::=

 instantiation_label {, instantiation_label}

 | others

 | all

Supported:

— configuration_specification

— component_specification

— instantiation_list

8.5.2.1 Binding indication

 binding_indication ::=

 [use entity_aspect]

 [generic_map_aspect]

 [port_map_aspect]

Supported:

— binding_indication

a) Entity aspect

 entity_aspect ::=

 entity entity_name [(architecture_identifier)]

 | configuration configuration_name

 | open
68 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
Supported:

— entity_aspect

b) Generic map and port map aspects

 generic_map_aspect ::=

 generic map (generic_association_list)

 port_map_aspect ::=

 port map (port_association_list)

8.5.2.2 Default binding indication

Default binding shall be supported.

8.5.3 Disconnection specification

Disconnection specifications shall not be supported.

8.6 Names

8.6.1 Names

 name ::=

 simple_name

 | operator_symbol

 | selected_name

 | indexed_name

 | slice_name

 | attribute_name

 prefix ::=

 name

 | function_call

Supported:

— name

— prefix

8.6.2 Simple names

 simple_name ::= identifier:

Supported:

— simple_name
Copyright © 2004 IEEE. All rights reserved. 69

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
8.6.3 Selected names

 selected_name ::= prefix.suffix

 suffix ::=

 simple_name

 | character_literal

 | operator_symbol

 | all

Supported:

— selected_name

— suffix

8.6.4 Indexed names

 indexed_name ::= prefix (expression {, expression })

Supported:

— indexed_name

Using an indexed name of an unconstrained out parameter in a procedure shall not be supported.

8.6.5 Slice names

 slice_name ::= prefix (discrete_range)

Supported:

— slice_name

Using a slice name of an unconstrained out parameter in a procedure shall not be supported.

Null slices shall not be supported.

For a discrete range that appears as part of a slice name, the bounds of the discrete range shall be specified
directly or indirectly as static values belonging to an integer type.

8.6.6 Attribute names

 attribute_name ::=

 prefix [signature]'attribute_designator [(expression)]

 attribute_designator ::= attribute_simple_name

Supported attribute designators:

— 'BASE

— 'LEFT

— 'RIGHT

— 'HIGH

— 'LOW

— 'RANGE
70 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
— 'REVERSE_RANGE

— 'LENGTH

— 'EVENT

— 'STABLE

Supported:

— attribute_name

— attribute_designator

Attributes 'EVENT and 'STABLE shall only be used as specified in 6.1.

8.7 Expressions

8.7.1 Expressions

 expression ::=

 relation { and relation }

 | relation { or relation }

 | relation { xor relation }

 | relation [nand relation]

 | relation [nor relation]

 | relation { xnor relation }

 relation ::=

 shift_expression [relational_operator shift_expression]

 shift_expression ::=

 simple_expression [shift_operator simple_expression]

 simple_expression ::=

 [sign] term { adding_operator term }

 term ::=

 factor { multiplying_operator factor }

 factor ::=

 primary [** primary]

 | abs primary

 | not primary

 primary ::=

 name

 | literal

 | aggregate

 | function_call

 | qualified_expression

 | type_conversion

 | allocator

 | (expression)
Copyright © 2004 IEEE. All rights reserved. 71

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
Supported:

— expression

— relation

— shift_expression

— simple_expression

— term

— factor

— primary

Not Supported:

— allocator in a primary

8.7.2 Operators

 logical_operator ::= and | or | nand | nor | xor | xnor

 relational_operator ::= = | /= | < | <= | > | >=

 shift_operator ::= sll | srl | sla | sra | rol | ror

 adding_operator ::= + | - | &

 sign ::= + | -

 multiplying_operator ::= * | / | mod | rem

 miscellaneous_operator ::= ** | abs | not

Supported:

— logical_operator

— relational_operator

— adding_operator

— sign

— multiplying_operator

— miscellaneous_operator

8.7.2.1 Logical operators

No restriction.

8.7.2.2 Relational operators

No restriction.

NOTE—Using relational operators for an enumerated type that has an explicit encoding specified via the
ENUM_ENCODING attribute may lead to simulation mismatches (see 7.1.8).

8.7.2.3 Shift operators

No restriction.

8.7.2.4 Adding operators

No restriction.
72 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
8.7.2.5 Sign operators

No restriction.

8.7.2.6 Multiplying operators

Supported:

— * (multiply) operator

— / (division), mod, and rem operators

— all multiplying operators defined in IEEE Std 1076.3-1997

8.7.2.7 Miscellaneous operators

Supported:

— ** (exponentiation) operator

— abs operator

The ** (exponentiation) operator shall be supported only when both operands are static or when the left
operand has the static value 2.

8.7.3 Operands

8.7.3.1 Literals

 literal ::=

 numeric_literal

 | enumeration_literal

 | string_literal

 | bit_string_literal

 | null

 numeric_literal ::=

 abstract_literal

 | physical_literal.

Supported:

— literal

— numeric_literal

Not Supported:

— physical literal, except of type TIME occurring where ignored

— null

Physical literals of type TIME and floating point literals may occur only within ignored constructs, for
example, after clauses.
Copyright © 2004 IEEE. All rights reserved. 73

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
8.7.3.2 Aggregates

 aggregate ::=

 (element_association {, element_association})

 element_association ::=

 [choices =>] expression

 choices ::= choice { | choice }

 choice ::=

 simple_expression

 | discrete_range

 | element_simple_name

 | others

Supported:

— aggregate

— element_association

— choices

— choice

— Use of a type as a choice

Example:
 subtype Src_Typ is Integer range 7 downto 4;

 subtype Dest_Typ is Integer range 3 downto 0;

 -- Constant definition with aggregates

 constant Data_c : Std_Logic_Vector(7 downto 0)

 := (Src_Typ => '1', Dest_Typ => '0');

a) Record aggregates

No restriction.

b) Array aggregates

No restriction.

8.7.3.3 Function calls

 function_call ::=

 function_name [(actual_parameter_part)]

 actual_parameter_part ::= parameter_association_list

Supported:

— function_call

— actual_parameter_part

Restrictions exist for the actual parameter part. These restrictions are described in 8.4.3.2.
74 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
8.7.3.4 Qualified expressions

 qualified_expression ::=

 type_mark'(expression)

 | type_mark'aggregate

Supported:

— qualified_expression

8.7.3.5 Type conversions

 type_conversion ::= type_mark(expression)

Supported:

— type_conversion

8.7.3.6 Allocators

 allocator ::=

 new subtype_indication

 | new qualified_expression

Not Supported:

— allocator

8.7.4 Static expressions

8.7.4.1 Locally static primaries

Locally static primaries shall be supported.

8.7.4.2 Globally static primaries

Globally static primaries shall be supported.

8.7.5 Universal expressions

Floating-point expressions shall not be supported. Infinite-precision expressions shall not be supported. Pre-
cision shall be limited to 32 bits.

8.8 Sequential statements

 sequence_of_statements ::=

 { sequential_statement }

 sequential_statement ::=

 wait_statement

 | assertion_statement

 | report_statement

 | signal_assignment_statement

 | variable_assignment_statement

 | procedure_call_statement
Copyright © 2004 IEEE. All rights reserved. 75

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
 | if_statement

 | case_statement

 | loop_statement

 | next_statement

 | exit_statement

 | return_statement

 | null_statement

Supported:

— sequence_of_statements

— sequential_statement

8.8.1 Wait statement

 wait_statement ::=

 [label:] wait [sensitivity_clause]

 [condition_clause] [timeout_clause] ;

 sensitivity_clause ::= on sensitivity_list

 sensitivity_list ::= signal_name {, signal_name}

 condition_clause ::= until condition

 condition ::= boolean_expression

 timeout_clause ::= for time_expression

Supported:

— wait_statement

— condition_clause

— condition

— sensitivity_clause

— sensitivity_list

Ignored:

— timeout_clause

Wait statements shall be supported only to define sequential behavior. See 6.1.3.2 and 6.1.3.4 for the model-
ing rules applied to wait statements.

NOTE—The use of a timeout clause may lead to simulation mismatches.
76 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
8.8.2 Assertion statement

 assertion_statement ::= [label:] assertion ;

 assertion ::=

 assert condition

 [report expression]

 [severity expression]

Ignored:

— assertion_statement

— assertion

8.8.3 Report statement

 report_statement ::=

 [label:] report expression

 [severity expression] ;

Ignored:

— report_statement

8.8.4 Signal assignment statement

 signal_assignment_statement ::=

 [label:] target <= [delay_mechanism] waveform ;

 delay_mechanism ::=

 transport

 | [reject time_expression] inertial

 target ::=

 name

 | aggregate

 waveform ::=

 waveform_element {, waveform_element}

 | unaffected

Supported:

— signal_assignment_statement

— target

— waveform

— reserved word unaffected

Ignored:

— delay_mechanism

Not Supported:

— time_expression

— multiple waveform_elements
Copyright © 2004 IEEE. All rights reserved. 77

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
An assignment to a signal declared in a package shall not be supported.

8.8.4.1 Updating a projected output waveform

 waveform_element ::=

 value_expression [after time_expression]

 | null [after time_expression]

Supported:

— waveform_element

Ignored:

— time expression after reserved word after

Not Supported:

— null waveform elements

8.8.5 Variable assignment statement

 variable_assignment_statement ::=

 [label:] target := expression ;

Supported:

— variable_assignment_statement

8.8.6 Procedure call statement

 procedure_call_statement ::= [label:] procedure_call ;

 procedure_call ::= procedure_name [(actual_parameter_part)]

Supported:

— procedure_call_statement

— procedure_call

Restrictions for the actual parameter part are described in 8.4.3.2, item b).

8.8.7 If statement

 if_statement ::=

 [if_label:]

 if condition then

 sequence_of_statements

 { elsif condition then

 sequence_of_statements }

 [else

 sequence_of_statements]

 end if [if_label] ;

Supported:

— if_statement
78 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
NOTE—If a signal or variable is assigned under some values of the conditional expressions in the if statement, but not
for all values, storage elements may result; see 6.1 and 6.2.

8.8.8 Case statement

 case_statement ::=

 [case_label:]

 case expression is

 case_statement_alternative

 { case_statement_alternative }

 end case [case_label] ;

 case_statement_alternative ::=

 when choices =>

 sequence_of_statements

Supported:

— case_statement

— case_statement_alternative

NOTE—If a signal or variable is assigned under some values of the conditional expressions in the case statement, but
not for all values, storage elements may result; see 6.1 and 6.2.

If a metalogical or high-impedance value occurs as a choice, or as an element of a choice, in a case statement
that is interpreted by a synthesis tool, the synthesis tool shall ignore that choice and synthesize the case state-
ment as though that choice did not exist. That is, the interpretation that is generated shall not be required to
contain any construct corresponding to the presence or absence of the sequence of statements associated
with the choice.

NOTES

1—If the type of the case expression includes metalogical or high-impedance values, and if not all of the metalogical or
high-impedance values are included among the case choices, then the case statement must include an others choice to
cover the missing metalogical or high-impedance choice values (IEEE Std 1076-2002).

2—A case choice including a metalogical or high-impedance value such as “1X1” indicates a branch that never can be
taken by the synthesized circuit (IEEE Std 1076.3-1997).

8.8.9 Loop statement

 loop_statement ::=

 [loop_label:]

 [iteration_scheme] loop

 sequence_of_statements

 end loop [loop_label] ;

 iteration_scheme ::=

 while condition

 | for loop_parameter_specification

 parameter_specification ::=

 identifier in discrete_range

 discrete_range ::= discrete_subtype_indication | range
Copyright © 2004 IEEE. All rights reserved. 79

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
Supported:

— loop_statement

— iteration_scheme

— parameter_specification

— discrete_range

Not Supported:

— while

For a discrete range that appears as part of a parameter specification, the bounds of the discrete range shall
be specified directly or indirectly as static values belonging to an integer type.

8.8.10 Next statement

 next_statement ::=

 [label:] next [loop_label] [when condition] ;

Supported:

— next_statement

8.8.11 Exit statement

 exit_statement ::=

 [label:] exit [loop_label] [when condition] ;

Supported:

— exit_statement

8.8.12 Return statement

 return_statement ::=

 [label:] return [expression] ;

Supported:

— return_statement

8.8.13 Null statement

 null_statement ::=

 [label:] null ;

Supported:

— null_statement
80 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
8.9 Concurrent statements

 concurrent_statement ::=

 block_statement

 | process_statement

 | concurrent_procedure_call_statement

 | concurrent_assertion_statement

 | concurrent_signal_assignment_statement

 | component_instantiation_statement

 | generate_statement

Supported:

— concurrent_statement

8.9.1 Block statement

 block_statement ::=

 block_label:

 block [(guard_expression)] [is]

 block_header

 block_declarative_part

 begin

 block_statement_part

 end block [block_label] ;

 block_header ::=

 [generic_clause

 [generic_map_aspect ;]]

 [port_clause

 [port_map_aspect ;]]

 block_declarative_part ::=

 { block_declarative_item }

 block_statement_part ::=

 { concurrent_statement }

Supported:

— block_statement

— block_declarative_part

— block_statement_part

Not Supported:

— block_header
Copyright © 2004 IEEE. All rights reserved. 81

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
8.9.2 Process statement

 process_statement ::=

 [process_label:]

 [postponed] process [(sensitivity_list)] [is]

 process_declarative_part

 begin

 process_statement_part

 end [postponed] process [process_label] ;

 process_declarative_part ::=

 { process_declarative_item }

 process_declarative_item ::=

 subprogram_declaration

 | subprogram_body

 | type_declaration

 | subtype_declaration

 | constant_declaration

 | variable_declaration

 | file_declaration

 | alias_declaration

 | attribute_declaration

 | attribute_specification

 | use_clause

 | group_template_declaration

 | group_declaration

 process_statement_part ::=

 { sequential_statement }

Supported:

— process_statement

— sensitivity_list

— process_declarative_part

— process_declarative_item

— process_statement_part

Ignored:

— file_declaration

— user-defined attribute declarations and their specifications, except those of the synthesis-specific
attributes of Clause 7.

Not Supported:

— reserved word postponed

— group_template_declaration

— group_declaration

The sensitivity list shall include those signals or elements of signals that are read by the process except for
signals read only under control of a clock edge, as described in Clause 6.
82 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
Attribute declarations and specifications as described in 7.1 shall be the only ones supported.

Use of file objects or access objects (variables of access type) in a process shall not be supported.

8.9.3 Concurrent procedure call statement

 concurrent_procedure_call_statement ::=

 [label:] [postponed] procedure_call ;

Supported:

— concurrent_procedure_call_statement

Not Supported:

— reserved word postponed

8.9.4 Concurrent assertion statement

 concurrent_assertion_statement ::=

 [label:] [postponed] assertion ;

Ignored:

— concurrent_assertion_statement

Not Supported:

— Reserved word postponed

8.9.5 Concurrent signal assignment statement

 concurrent_signal_assignment_statement ::=

 [label:] [postponed] conditional_signal_assignment

 | [label:] [postponed] selected_signal_assignment

 options ::= [guarded] [delay_mechanism]

Supported:

— concurrent_signal_assignment_statement

— guarded in options

Not Supported:

— reserved word postponed

Any after clause shall be ignored.

Multiple waveform elements shall not be supported.
Copyright © 2004 IEEE. All rights reserved. 83

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
Example:
 architecture A of E is

 begin

 B(7) <= A(6);

 B(3 downto 0) <= A(7 downto 4);

 C <= not A;

 end A;

8.9.5.1 Conditional signal assignment

 conditional_signal_assignment ::=

 target <= options conditional_waveforms ;

 conditional_waveforms ::=

 { waveform when condition else }

 waveform [when condition]

NOTE—Options, guarded, and delay_mechanism are expanded in 8.9.5.

Supported:

— conditional_signal_assignment

— conditional_waveforms

Ignored:

— delay_mechanism

A conditional waveform that contains a reference to one or more elements of the target signal shall not be
supported.

Example:
 architecture A of E is

 begin

 C <= B when A(0) = '1' else

 not B when A(1) = '1' else

 "00000000" when A(2) = '1' and RESET = '1' else
 (others => ('1'));

 end A;

8.9.5.2 Selected signal assignment

 selected_signal_assignment ::=

 with expression select

 target <= options selected_waveforms ;

 select_waveforms ::=

 { waveform when choices , }

 waveform when choices

NOTE—Options, guarded, and delay_mechanism are expanded in 8.9.5.
84 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
Supported:

— selected_signal_assignment

— select_waveforms

Ignored:

— delay_mechanism

A conditional waveform that contains a reference to one or more elements of the target signal shall not be
supported.

Example:

architecture A of E is

 begin

 with A select

 C <= B when "00000000",

 not B when "10101010",

 (others => ('1')) when "11110001",

 not A when others;

 end A;

8.9.6 Component instantiation statement

 component_instantiation_statement ::=

 instantiation_label:

 instantiated_unit

 [generic_map_aspect]

 [port_map_aspect] ;

 instantiated_unit ::=

 [component] component_name

 | entity entity_name [(architecture_name)]

 | configuration configuration_name

Supported:

— component_instantiation_statement

— instantiated_unit

Restrictions exist for the generic map aspect and the port map aspect; these are described in 8.4.3.2.

8.9.6.1 Instantiation of a component

No restriction.

8.9.6.2 Instantiation of a design entity

No restriction.
Copyright © 2004 IEEE. All rights reserved. 85

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
8.9.7 Generate statement

 generate_statement ::=

 generate_label:

 generation_scheme generate

 [{ block_declarative_item }

 begin]

 { concurrent_statement }

 end generate [generate_label] ;

 generation_scheme ::=

 for generate_parameter_specification

 | if condition

 label ::= identifier

Supported:

— generate_statement

— generate_scheme

— label

The generate parameter specification shall be statically computable and of the form “identifier in range”
only.

8.10 Scope and visibility

8.10.1 Declarative region

Declarative regions shall be supported.

8.10.2 Scope of declarations

The scope of declarations shall be supported.

8.10.3 Visibility

Visibility rules shall be supported.

8.10.4 Use clause

 use_clause ::=

 use selected_name {, selected_name} ;

The use clause shall contain only the selected name of a package.

Supported:

— use_clause

8.10.5 The context of overloaded resolution

The context of overloaded resolution shall be supported.
86 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
8.11 Design units and their analysis

8.11.1 Design units

 design_file ::= design_unit { design_unit }

 design_unit ::= context_clause library_unit

 library_unit ::=

 primary_unit

 | secondary_unit

 primary_unit ::=

 entity_declaration

 | configuration_declaration

 | package_declaration

 secondary_unit ::=

 architecture_body

 | package_body

Supported:

— design_file

— design_unit

— library_unit

— primary_unit

— secondary_unit

8.11.2 Design libraries

 library_clause ::= library logical_name_list ;

 logical_name_list ::= logical_name {, logical_name}

 logical_name ::= identifier

Supported:

— library_clause

— logical_name_list

— logical_name

8.11.3 Context clauses

 context_clause ::= { context_item }

 context_item ::=

 library_clause

 | use_clause
Copyright © 2004 IEEE. All rights reserved. 87

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
Supported:

— context_clause

— context_item

8.11.4 Order of analysis

The order of analysis shall be supported.

8.12 Elaboration

Elaboration shall not be constrained.

8.13 Lexical elements

Extended identifiers shall not be supported.

8.14 Predefined language environment

8.14.1 Predefined attributes

8.14.1.1 Attributes whose prefix type is a type t

 t'BASE

 t'LEFT

 t'RIGHT

 t'HIGH

 t'LOW

 t'ASCENDING

 t'IMAGE

 t'VALUE(x)

 t'POS(x)

 t'VAL(x)

 t'SUCC(x)

 t'PRED(x)

 t'LEFTOF(x)

 t'RIGHTOF(x)
88 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
8.14.1.2 Attributes whose prefix is an array object a, or attributes of a constrained array
subtype a

 a'LEFT[(n)]

 a'RIGHT[(n)]

 a'HIGH[(n)]

 a'LOW[(n)]

 a'RANGE[(n)]

 a'REVERSE_RANGE[(n)]

 a'LENGTH[(n)]

 a'ASCENDING[(n)]

8.14.1.3 Attributes whose prefix is a signal s

 s'DELAYED[(t)]

 s'STABLE[(t)]

 s'QUIET

 s'TRANSACTION

 s'EVENT

 s'ACTIVE

 s'LAST_EVENT

 s'LAST_ACTIVE

 s'LAST_VALUE

 s'DRIVING

 s'DRIVING_VALUE

Attributes STABLE and EVENT may only be used as described in Clause 6.

8.14.1.4 Attributes whose prefix is a named object e

 e'SIMPLE_NAME

 e'INSTANCE_NAME

 e'PATH_NAME
Copyright © 2004 IEEE. All rights reserved. 89

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
8.14.2 Package STANDARD

Functions in the package STANDARD shall be either supported or not supported as defined below:

Supported:

— functions with one or more arguments of type CHARACTER

— functions with one or more arguments of type STRING

— all functions whose arguments are only of type BOOLEAN

— all functions whose arguments are only of type BIT

— the following functions with arguments of type “universal integer” or of type INTEGER:

relational operator functions

“+”, “-”, “abs”, “*”

“/”, “mod”, and “rem”, provided both operands are static or the second argument is a static
power of two

“**” provided the first argument is a static value of two

— all functions with an argument of type BIT_VECTOR

Ignored:

-- the attribute 'FOREIGN

Not Supported:

— functions with arguments of type SEVERITY_LEVEL

— the following functions with arguments of type “universal integer” or INTEGER:

“/”, “mod”, and “rem” when neither operand is static or the second argument is not a static
power of two

“**” when the first argument is not a static value of two

— functions with arguments of type “universal real” or of type REAL

— functions with one or more arguments of type TIME

— the function NOW

— functions with one or more arguments of type FILE_OPEN_KIND

— functions with one or more arguments of type FILE_OPEN_STATUS

8.14.3 Package TEXTIO

The subprograms defined in package TEXTIO shall not be supported.
90 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
Annex A

(informative)

Syntax summary

This annex summarizes the VHDL syntax that is supported.

 abstract_literal ::= decimal_literal | based_literal

 access_type_definition ::= access subtype_indication

 actual_designator ::=

 expression

 | signal_name

 | variable_name

 | file_name

 | open

 actual_parameter_part ::= parameter_association_list

 actual_part ::=

 actual_designator

 | function_name(actual_designator)

 | type_mark(actual_designator)

 adding_operator ::= + | - | &

 aggregate ::=

 (element_association {, element_association})

 alias_declaration ::=

 alias alias_designator [: subtype_indication]

 is name [signature];

 alias_designator ::= identifier | character_literal

 | operator_symbol

 allocator ::=

 new subtype_indication

 | new qualified_expression

 architecture_body ::=

 architecture identifier of entity_name is

 architecture_declarative_part

 begin

 architecture_statement_part

 end [architecture] [architecture_simple_name] ;

 architecture_declarative_part ::=

 { block_declarative_item }
Copyright © 2004 IEEE. All rights reserved. 91

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
 architecture_statement_part ::=

 { concurrent_statement }

 array_type_definition ::=

 unconstrained_array_definition

 | constrained_array_definition

assertion ::=

 assert condition

 [report expression]

 [severity expression]

 assertion_statement ::= [label:] assertion;

 association_element ::=

 [formal_part =>] actual_part

 association_list ::=

 association_element {, association_element}

 attribute_declaration ::=

 attribute identifier : type_mark ;

 attribute_designator ::= attribute_simple_name

 attribute_name ::=

 prefix [signature]'attribute_designator [(expression)]

 attribute_specification ::=

 attribute attribute_designator of entity_specification

 is expression;

 base ::= integer

 base_specifier ::= B | O | X

 based_integer ::=

 extended_digit { [underline] extended_digit }

 based_literal ::=

 base # based_integer [. based_integer] # [exponent]

 basic_character ::=

 basic_graphic_character | format_effector

 basic_graphic_character ::=

 upper_case_letter | digit | special_character| space_character

 basic_identifier ::=

 letter { [underline] letter_or_digit }
92 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
 binding_indication ::=

 [use entity_aspect]

 [generic_map_aspect]

 [port_map_aspect]

 bit_string_literal ::= base_specifier “ [bit_value] “

 bit_value ::= extended_digit { [underline] extended_digit }

 block_configuration ::=

 for block_specification

 { use_clause }

 { configuration_item }

 end for ;

block_declarative_item ::=

 subprogram_declaration

 | subprogram_body

 | type_declaration

 | subtype_declaration

 | constant_declaration

 | signal_declaration

 | shared_variable_declaration

 | file_declaration

 | alias_declaration

 | component_declaration

 | attribute_declaration

 | attribute_specification

 | configuration_specification

 | disconnection_specification

 | use_clause

 | group_template_declaration

 | group_declaration

 block_declarative_part ::=

 { block_declarative_item }

 block_header ::=

 [generic_clause

 [generic_map_aspect ;]]

 [port_clause

 [port_map_aspect ;]]

 block_specification ::=

 architecture_name

 | block_statement_label

 | generate_statement_label [(index_specification)]
Copyright © 2004 IEEE. All rights reserved. 93

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
 block_statement ::=

 block_label:

 block [(guard_expression)] [is]

 block_header

 block_declarative_part

 begin

 block_statement_part

 end block [block_label] ;

 block_statement_part ::=

 { concurrent_statement }

 case_statement ::=

 [case_label:]

 case expression is

 case_statement_alternative

 { case_statement_alternative }

 end case [case_label] ;

 case_statement_alternative ::=

 when choices =>

 sequence_of_statements

 character_literal ::= ‘ graphic_character ‘

 choice ::=

 simple_expression

 | discrete_range

 | element_simple_name

 | others

 choices ::= choice { | choice }

component_configuration ::=

 for component_specification

 [binding_indication ;]

 [block_configuration]

 end for ;

 component_declaration ::=

 component identifier [is]

 [local_generic_clause]

 [local_port_clause]

 end component [component_simple_name];

 component_instantiation_statement ::=

 instantiation_label:

 instantiated_unit

 [generic_map_aspect]

 [port_map_aspect] ;

 component_specification ::=

 instantiation_list : component_name
94 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
 composite_type_definition ::=

 array_type_definition

 | record_type_definition

 concurrent_assertion_statement ::=

 [label:] [postponed] assertion ;

 concurrent_procedure_call_statement ::=

 [label:] [postponed] procedure_call ;

 concurrent_signal_assignment_statement ::=

 [label:] [postponed] conditional_signal_assignment

 | [label:] [postponed] selected_signal_assignment

 concurrent_statement ::=

 block_statement

 | process_statement

 | concurrent_procedure_call_statement

 | concurrent_assertion_statement

 | concurrent_signal_assignment_statement

 | component_instantiation_statement

 | generate_statement

 condition ::= boolean_expression

 condition_clause ::= until condition

 conditional_signal_assignment ::=

 target <= options conditional_waveforms ;

 conditional_waveforms ::=

 { waveform when condition else }

 waveform [when condition]

 configuration_declaration ::=

 configuration identifier of entity_name is

 configuration_declarative_part

 block_configuration

 end [configuration] [configuration_simple_name];

configuration_declarative_item ::=

 use_clause

 | attribute_specification

 | group_declaration

 configuration_declarative_part ::=

 { configuration_declarative_item }

 configuration_item ::=

 block_configuration

 | component_configuration
Copyright © 2004 IEEE. All rights reserved. 95

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
 configuration_specification ::=

 for component_specification binding_indication;

 constant_declaration ::=

 constant identifier_list : subtype_indication [:= expression];

 constrained_array_definition ::=

 array index_constraint of element_subtype_indication

 constraint ::=

 range_constraint

 | index_constraint

 context_clause ::= { context_item }

 context_item ::=

 library_clause

 | use_clause

 decimal_literal ::= integer [. integer] [exponent]

 declaration ::=

 type_declaration

 | subtype_declaration

 | object_declaration

 | interface_declaration

 | alias_declaration

 | attribute_declaration

 | component_declaration

 | group_template_declaration

 | group_declaration

 | entity_declaration

 | configuration_declaration

 | subprogram_declaration

 | package_declaration

 delay_mechanism ::=

 transport

 | [reject time_expression] inertial

 design_file ::= design_unit { design_unit }

 design_unit ::= context_clause library_unit

 designator ::= identifier | operator_symbol

 direction ::= to | downto

 disconnection_specification ::=

 disconnect guarded_signal_specification after time_expression ;

 discrete_range ::= discrete_subtype_indication | range
96 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
element_association ::=

 [choices =>] expression

 element_declaration ::= identifier_list

 : element_subtype_definition ;

 element_subtype_definition ::= subtype_indication

 entity_aspect ::=

 entity entity_name [(architecture_identifier)]

 | configuration configuration_name

 | open

 entity_class ::=

 entity | architecture | configuration

 | procedure | function | package

 | type | subtype | constant

 | signal | variable | component

 | label | literal | units

 | group | file

 entity_class_entry ::= entity_class [<>]

 entity_class_entry_list ::=

 entity_class_entry {, entity_class_entry }

 entity_declaration ::=

 entity identifier is

 entity_header

 entity_declarative_part

 [begin

 entity_statement_part]

 end [entity] [entity_simple_name] ;

 entity_declarative_item ::

 subprogram_declaration

 | subprogram_body

 | type_declaration

 | subtype_declaration

 | constant_declaration

 | signal_declaration

 | shared_variable_declaration

 | file_declaration

 | alias_declaration

 | attribute_declaration

 | attribute_specification

 | disconnection_specification

 | use_clause

 | group_template_declaration

 | group_declaration

 entity_declarative_part ::=

 { entity_declarative_item }
Copyright © 2004 IEEE. All rights reserved. 97

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
 entity_designator ::= entity_tag [signature]

 entity_header ::=

 [formal_generic_clause]

 [formal_port_clause]

 entity_name_list ::=

 entity_designator {, entity_designator}

 | others

 | all

entity_specification ::=

 entity_name_list : entity_class

 entity_statement ::=

 concurrent_assertion_statement

 | passive_concurrent_procedure_call

 | passive_process_statement

 entity_statement_part ::=

 { entity_statement }

 entity_tag ::= simple_name | character_literal | operator_symbol

 enumeration_literal ::= identifier | character_literal

 enumeration_type_definition ::=

 (enumeration_literal { , enumeration_literal })

 exit_statement ::=

 [label:] exit [loop_label] [when condition] ;

 exponent ::= E [+] integer | E - integer

 expression ::=

 relation { and relation }

 | relation { or relation }

 | relation { xor relation }

 | relation [nand relation]

 | relation [nor relation]

 | relation { xnor relation }

 extended_digit ::= digit | letter

 extended_identifier ::=

 \ graphic_character { graphic_character } \

 factor ::=

 primary [** primary]

 | abs primary

 | not primary
98 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
 file_declaration ::=

 file identifier_list : subtype_indication

 [file_open_information] ;

 file_logical_name ::= string_expression

 file_open_information ::=

 [open file_open_kind_expression] is file_logical_name

 file_type_definition ::= file of type_mark

 floating_type_definition ::= range_constraint

 formal_designator ::=

 generic_name

 | port_name

 | parameter_name

 formal_parameter_list ::= parameter_interface_list

 formal_part ::=

 formal_designator

 | function_name(formal_designator)

 | type_mark(formal_designator)

full_type_declaration ::=

 type identifier is type_definition ;

 function_call ::=

 function_name [(actual_parameter_part)]

 generate_statement ::=

 generate_label:

 generation_scheme generate

 [{ block_declarative_item }

 begin]

 { concurrent_statement }

 end generate [generate_label] ;

 generation_scheme ::=

 for generate_parameter_specification

 | if condition

 generic_clause ::=

 generic(generic_list);

 generic_list ::= generic_interface_list

 generic_map_aspect ::=

 generic map (generic_association_list)
Copyright © 2004 IEEE. All rights reserved. 99

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
 graphic_character ::=

 basic_graphic_character | lower_case_letter

 | other_special_character

 group_constituent ::= name | character_literal

 group_constituent_list ::= group_constituent {, group_constituent }

 group_declaration ::=

 group identifier : group_template_name(group_consituent_list);

 group_template_declaration ::=

 group identifier is (entity_class_entry_list) ;

 guarded_signal_specification ::=

 guarded_signal_list : type_mark

 identifier ::=

 basic_identifier | extended_identifier

 identifier_list ::= identifier { , identifier }

 if_statement ::=

 [if_label:]

 if condition then

 sequence_of_statements

 { elsif condition then

 sequence_of_statements }

 [else

 sequence_of_statements]

 end if [if_label] ;

 incomplete_type_declaration ::= type identifier ;

 index_constraint ::= (discrete_range { , discrete_range })

index_specification ::=

 discrete_range

 | static_expression

 index_subtype_definition ::= type_mark range <>

 indexed_name ::= prefix (expression {, expression })

 instantiated_unit ::=

 [component] component_name

 | entity entity_name [(architecture_name)]

 | configuration configuration_name

 instantiation_list ::=

 instantiation_label {, instantiation_label}

 | others

 | all
100 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
 integer ::= digit { [underline] digit }

 integer_type_definition ::= range_constraint

 interface_constant_declaration ::=

 [constant] identifier_list :

 [in] subtype_indication [:= static_expression]

 interface_declaration ::=

 interface_constant_declaration

 | interface_signal_declaration

 | interface_variable_declaration

 | interface_file_declaration

 interface_element ::= interface_declaration

 interface_file_declaration ::=

 file identifier_list : subtype_indication

 interface_list ::=

 interface_element {; interface_element}

 interface_signal_declaration ::=

 [signal] identifier_list : [mode] subtype_indication [bus]

 [:= static_expression]

 interface_variable_declaration ::=

 [variable] identifier_list : [mode] subtype_indication

 [:= static_expression]

 iteration_scheme ::=

 while condition

 | for loop_parameter_specification

 label ::= identifier

 letter ::= upper_case_letter | lower_case_letter

 letter_or_digit ::= letter | digit

 library_clause ::= library logical_name_list ;

 library_unit ::=

 primary_unit

 | secondary_unit

literal ::=

 numeric_literal

 | enumeration_literal

 | string_literal

 | bit_string_literal

 | null
Copyright © 2004 IEEE. All rights reserved. 101

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
 logical_name ::= identifier

 logical_name_list ::= logical_name { , logical_name }

 logical_operator ::= and | or | nand | nor | xor | xnor

 loop_statement ::=

 [loop_label:]

 [iteration_scheme] loop

 sequence_of_statements

 end loop [loop_label] ;

 miscellaneous_operator ::= ** | abs | not

 mode ::= in | out | inout | buffer | linkage

 multiplying_operator ::= * | / | mod | rem

 name ::=

 simple_name

 | operator_symbol

 | selected_name

 | indexed_name

 | slice_name

 | attribute_name

 next_statement ::=

 [label:] next [loop_label] [when condition] ;

 null_statement ::=

 [label:] null ;

 numeric_literal ::=

 abstract_literal

 | physical_literal

 object_declaration ::=

 constant_declaration

 | signal_declaration

 | variable_declaration

 | file_declaration

 operator_symbol ::= string_literal

 options ::= [guarded] [delay_mechanism]

 package_body ::=

 package body package_simple_name is

 package_body_declarative_part

 end [package body] [package_simple_name] ;
102 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
package_body_declarative_item ::=

 subprogram_declaration

 | subprogram_body

 | type_declaration

 | subtype_declaration

 | constant_declaration

 | shared_variable_declaration

 | file_declaration

 | alias_declaration

 | use_clause

 | group_template_declaration

 | group_declaration

 package_body_declarative_part ::=

 { package_body_declarative_item }

 package_declaration ::=

 package identifier is

 package_declarative_part

 end [package] [package_simple_name] ;

 package_declarative_item ::=

 subprogram_declaration

 | type_declaration

 | subtype_declaration

 | constant_declaration

 | signal_declaration

 | shared_variable_declaration

 | file_declaration

 | alias_declaration

 | component_declaration

 | attribute_declaration

 | attribute_specification

 | disconnection_specification

 | use_clause

 | group_template_declaration

 | group_declaration

 package_declarative_part ::=

 { package_declarative_item }

 parameter_specification ::=

 identifier in discrete_range

 physical_literal ::= [abstract_literal] unit_name

 physical_type_definition ::=

 range_constraint

 units

 base_unit_declaration

 { secondary_unit_declaration }

 end units [physical_type_simple_name]
Copyright © 2004 IEEE. All rights reserved. 103

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
 port_clause ::=

 port(port_list);

 port_list ::= port_interface_list

 port_map_aspect ::=

 port map (port_association_list)

 prefix ::=

 name

 | function_call

primary_unit_declaration ::= identifier ;

 primary ::=

 name

 | literal

 | aggregate

 | function_call

 | qualified_expression

 | type_conversion

 | allocator

 | (expression)

 primary_unit ::=

 entity_declaration

 | configuration_declaration

 | package_declaration

 procedure_call ::= procedure_name [(actual_parameter_part)]

 procedure_call_statement ::= [label:] procedure_call ;

 process_declarative_item ::=

 subprogram_declaration

 | subprogram_body

 | type_declaration

 | subtype_declaration

 | constant_declaration

 | variable_declaration

 | file_declaration

 | alias_declaration

 | attribute_declaration

 | attribute_specification

 | use_clause

 | group_template_declaration

 | group_declaration

 process_declarative_part ::=

 { process_declarative_item }
104 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
 process_statement ::=

 [process_label:]

 [postponed] process [(sensitivity_list)] [is]

 process_declarative_part

 begin

 process_statement_part

 end [postponed] process [process_label] ;

 process_statement_part ::=

 { sequential_statement }

 protected_type_body :=

 protected body

 protected_type_body_declarative_part

 end protected body [protected_type_simple_name]

protected_type_body_declarative_item ::=

 subprogram_declaration

 | subprogram_body

 | type_declaration

 | subtype_declaration

 | constant_declaration

 | variable_declaration

 | file_declaration

 | alias_declaration

 | attribute_declaration

 | attribute_specification

 | use_clause

 | group_template_declaration

 | group_declaration

 protected_type_body_declarative_part ::=

 { protected_type_body_declarative_item }

 protected_type_declaration ::=

 protected

 protected_type_declarative_part

 end protected [protected_type_simple_name]

 protected_type_declarative_item ::=

 subprogram_declaration

 | attribute_specification

 | use_clause

 protected_type_declarative_part ::=

 { protected_type_declarative_item }

 protected_type_definition ::=

 protected_type_declaration

 | protected_type_body
Copyright © 2004 IEEE. All rights reserved. 105

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
 qualified_expression ::=

 type_mark'(expression)

 | type_mark'aggregate

 range ::=

 range_attribute_name

 | simple_expression direction simple_expression

 range_constraint ::= range range

 record_type_definition ::=

 record

 element_declaration

 { element_declaration }

 end record [record_type_simple_name]

 relation ::=

 shift_expression [relational_operator shift_expression]

 relational_operator ::= = | /= | < | <= | > | >=

 report_statement ::=

 [label:] report expression

 [severity expression] ;

 return_statement ::=

 [label:] return [expression] ;

scalar_type_definition ::=

 enumeration_type_definition

 | integer_type_definition

 | physical_type_definition

 | floating_type_definition

 secondary_unit ::=

 architecture_body

 | package_body

 secondary_unit_declaration ::= identifier = physical_literal ;

 selected_name ::= prefix.suffix

 selected_signal_assignment ::=

 with expression select

 target <= options selected_waveforms ;

 selected_waveforms ::=

 { waveform when choices , }

 waveform when choices

 sensitivity_clause ::= on sensitivity_list

 sensitivity_list ::= signal_name {, signal_name}
106 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
 sequence_of_statements ::=

 { sequential_statement }

 sequential_statement ::=

 wait_statement

 | assertion_statement

 | report_statement

 | signal_assignment_statement

 | variable_assignment

 | procedure_call_statement

 | if_statement

 | case_statement

 | loop_statement

 | next_statement

 | exit_statement

 | return_statement

 | null_statement

 shift_expression ::=

 simple_expression [shift_operator simple_expression]

 shift_operator ::= sll | srl | sla | sra | rol | ror

 sign ::= + | -

 signal_assignment_statement ::=

 [label:] target <= [delay_mechanism] waveform ;

 signal_declaration ::=

 signal identifier_list :

 subtype_indication [signal_kind]

 [:= expression] ;

 signal_kind ::= register | bus

signal_list ::=

 signal_name {, signal_name }

 | others

 | all

 signature ::= [[type_mark { , type_mark }] [return type_mark]]

 simple_expression ::=

 [sign] term { adding_operator term }

 simple_name ::= identifier

 slice_name ::= prefix (discrete_range)

 string_literal ::= “ { graphic_character } “
Copyright © 2004 IEEE. All rights reserved. 107

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
 subprogram_body ::=

 subprogram_specification is

 subprogram_declarative_part

 begin

 subprogram_statement_part

 end [subprogram_kind] [designator] ;

 subprogram_declaration ::=

 subprogram_specification ;

 subprogram_declarative_item ::=

 subprogram_declaration

 | subprogram_body

 | type_declaration

 | subtype_declaration

 | constant_declaration

 | variable_declaration

 | file_declaration

 | alias_declaration

 | attribute_declaration

 | attribute_specification

 | use_clause

 | group_template_declaration

 | group_declaration

 subprogram_declarative_part ::=

 { subprogram_declarative_item }

 subprogram_kind ::= procedure | function

 subprogram_specification ::=

 procedure designator [(formal_parameter_list)]

 | [pure | impure] function designator

 [(formal_parameter_list)]

 return type_mark

 subprogram_statement_part ::=

 { sequential_statement }

 subtype_declaration ::=

 subtype identifier is subtype_indication ;

 subtype_indication ::=

 [resolution_function_name] type_mark [constraint]

suffix ::=

 simple_name

 | character_literal

 | operator_symbol

 | all
108 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
 target ::=

 name

 | aggregate

 term ::=

 factor { multiplying_operator factor }

 timeout_clause ::= for time_expression

 type_conversion ::= type_mark(expression)

 type_declaration ::=

 full_type_declaration

 | incomplete_type_declaration

 type_definition ::=

 scalar_type_definition

 | composite_type_definition

 | access_type_definition

 | file_type_definition

 | protected_type_definition

 type_mark ::=

 type_name

 | subtype_name

 unconstrained_array_definition ::=

 array (index_subtype_definition { , index_subtype_definition })

 of element_subtype_indication

 use_clause ::=

 use selected_name {, selected_name} ;

 variable_assignment_statement ::=

 [label:] target := expression ;

 variable_declaration ::=

 [shared] variable identifier_list : subtype_indication

 [:= expression] ;

 wait_statement ::=

 [label:] wait [sensitivity_clause]

 [condition_clause] [timeout_clause] ;

 waveform ::=

 waveform_element {, waveform_element}

 | unaffected

 waveform_element ::=

 value_expression [after time_expression]

 | null [after time_expression]
Copyright © 2004 IEEE. All rights reserved. 109

IEEE
Std 1076.6-2004 IEEE STANDARD FOR VHDL REGISTER
Annex B

(normative)

Synthesis package RTL_ATTRIBUTES

This annex contains the RTL_ATTRIBUTES package declaring all synthesis-specific attributes as described
in 7.1. The package shall be analyzed into logical library IEEE. Use of the package modified in any way
shall be nonconforming; however, users may declare these attributes anywhere they wish, provided the dec-
larations exactly match those given here.

 package RTL_ATTRIBUTES is

 -- This package shall be analyzed into library IEEE.

 attribute KEEP : boolean;

 attribute CREATE_HIERARCHY : boolean;

 attribute DISSOLVE_HIERARCHY : boolean;

 attribute SYNC_SET_RESET : boolean;

 attribute ASYNC_SET_RESET : boolean;

 attribute ONE_HOT : boolean;

 attribute ONE_COLD : boolean;

 attribute FSM_STATE : string;

 attribute FSM_COMPLETE : boolean;

 attribute BUFFERED : string;

 attribute INFER_MUX : boolean;

 attribute IMPLEMENTATION : string;

 attribute RETURN_PORT_NAME : string;

 attribute ENUM_ENCODING : string;

 attribute ROM_BLOCK : string;

 attribute RAM_BLOCK : string;

 attribute LOGIC_BLOCK : string;

 attribute GATED_CLOCK : boolean;

 attribute COMBINATIONAL : boolean;

 end package RTL_ATTRIBUTES;
110 Copyright © 2004 IEEE. All rights reserved.

IEEE
TRANSFER LEVEL (RTL) SYNTHESIS Std 1076.6-2004
A
accept a VHDL construct, 2
array type, 5
assignment reference, 3
async_assignment, 8, 9
async_condition, 8, 9, 15
ASYNC_SET_RESET attribute, 32, 33, 110
asynchronous set/reset, 5, 32
attribute, 4, 24, 26, 29- 36, 37, 39-45
attributes, 26, 29, 30, 33, 37, 39, 43, 68, 88, 89, 110
AUTO state encoding, 44

B
BINARY state encoded, 44
buffer insertion, 46
BUFFERED attribute, 46, 110
bus, signal kind, 23, 63, 107

C
case statement, declaration of a ROM, 25
case statements, and mux inference, 36
clock edge syntax, 6
clock edge, explicit, 12
clock edge, implicit, 12
clock edge, implict, transformed, 12
clock edge, multiple, 14
clock signal, allowed type, 7
clock, external gating, 42
clock, falling edge, 7, 8
clock, internal gating, 42
clock, rising edge, 7, 8
clock, single, edge-sensitive storage, 9
CLOCK_BUF buffering, 46
COMBINATIONAL attribute, 19-21, 40, 41, 110
combinational logic, 3-6, 19, 35, 40
combinational logic, and process, 23
combinational verification, 5, 6
compliance, model, 1, 6
compliance, tool, 1
compliant, 1, 2, 4, 5, 47
concurrent procedure call, 18, 22, 83
concurrent signal assignment, 17, 21, 83
concurrent subprogram, 18
conditional signal assignment, ex, 17, 35, 40, 84
constant, declaration of a ROM, 24
CREATE_HIERARCHY attribute, 30, 110

D
delays, synthesis vs. simulation, 5
DISSOLVE_HIERARCHY attribute, 30, 110
don’t care value, 3

E
edge-sensitive designs, 6
edge-sensitive model, 6

edge-sensitive sequential logic, 7
edge-sensitive storage element, 3, 6, 7, 9, 11, 15, 17,
26, 30
edge-sensitive storage element, modeling, 8
edge-sensitive storage, SYNC_SET_RESET at-
tribute, 30
ENUM_ENCODING attribute, 42, 44, 57, 72, 110
equivalent inputs, 5

F
failure mode, synthesis, 2
FSM_COMPLETE attribute, 45, 46, 110
FSM_STATE attribute, 43, 44, 46, 110
functional clock, defined, 14

G
GATED_CLOCK attribute, 41, 110
GRAY state encoding, 44
guard disconnect, 23
guarded assignment, signal kind, 23
guarded block, 18, 22

H
H and L inputs, 5
high impedance modeling, 23
HIGH_DRIVE buffering, 46
high-impedance value, 3, 5, 79
hold time, 5, 6

I
ignored, 1, 2, 29, 39, 43, 47, 54, 58, 62, 63, 65, 73, 83
IMPLEMENTATION attribute, 37, 38, 39, 110
INFER_MUX attribute, 36, 37, 110
input stimulus criteria, 5
interpret a VHDL construct, 2

K
KEEP attribute, 29, 110

L
level-sensitive designs, 6
level-sensitive model, 6
level-sensitive sequential logic, 23
level-sensitive storage element, 3, 26, 28, 32
level-sensitive storage element,
ASYNC_SET_RESET attribute, 32
LOGIC_BLOCK attibute, 40
LOGIC_BLOCK attribute, 39, 40, 110
logical operation, 4
LRM, 4

M
metacomment, 4, 29, 46, 47
metalogical value, 4, 5
model compliance, 1
modeling hardware elements, 7
Copyright © 2004 IEEE. All rights reserved. 111

IEEE
Std 1076.6-2004
O
ONE_COLD attribute, 33, 110
ONE_COLD state encoding, 44
ONE_HOT attribute, 33, 110
ONE_HOT state encoding, 44
operations, and technology implementation, 38
optimization, 7, 9, 29, 46
oscillatory behavior, 6
others, in state machine case statement, 45, 46

P
pragma, 1, 4, 14, 29
pragmas, attributes, 29
pragmas, two metacomments allowed, 46
predefined types, 5

R
RAM, 39
RAM data values, reading, 24, 26
RAM edge or level sensitive, 26
RAM model, 26
RAM_BLOCK attribute, 39, 40, 110
recursive procedure call, 20
recursive subprograms, 18
references, 3
register, signal kind, 22, 23
RESET_BUF buffering, 46
RETURN_PORT_NAME attribute, 37, 38, 110
ROM, 39
ROM defined by a signal, 25
ROM defined by a variable, 26
ROM model, 24
ROM, as case statement, 25
ROM, as constant array, 24
ROM, saved data, 24
ROM_BLOCK attribute, 25, 39, 40, 110
RTL, 4
RTL_ATTRIBUTES package, 110
RTL_SYNTHESIS OFF/ON, 14

S
selected signal assignment, ex, 36, 37
semantics of VHDL, 1
sensitivity list, 9, 14, 18, 19, 23

sensitivity list, signal, 9
sequential logic, 4, 5, 23, 40, 41
sequential verification, 6
settle time, 5
setup time, 6
setup/hold times, 5
state machine, default statemetn, 44
state machine, unreachable states, 45
subprogram implementation, and technology, 37
supported, 1
supported, not, 1
sync_assignment, 8, 9, 11
sync_condition, 8, 9
SYNC_SET_RESET attribute, 30, 31, 110
synchronous assignment, 4
synchronous set/reset optimization, 32
syntax of VHDL, 1
syntax summary, 91
synthesis, 39, 41
synthesis library, 4, 31, 32, 37, 39, 46
synthesis tool, 1-7, 23, 29, 30, 32, 33, 36-41, 44, 46,
47, 57, 79
synthesis-specific attribute, 4, 29, 66, 68, 82, 110

T
three-state logic, 23
three-state logic, guard disconnect, 23
three-state logic, Z assignment, 23
transient delays, 5, 6

U
user, 4

V
vector, 4
verification methodology, 5

W
wait statement, single, 12
waits, multiple, 15
well-defined, 4, 23

Z
Z assignment, 23
112 Copyright © 2004 IEEE. All rights reserved.

	IEEE Std 1076.6-2004 Cover Page
	Title Page
	Introduction
	Development of IEEE Std 1076.6-1999
	Notice to users
	Participants
	CONTENTS
	1. Overview
	1.1 Scope
	1.2 Compliance to this standard
	1.3 Terminology
	1.4 Conventions

	2. References
	3. Definitions and acronyms
	3.1 Definitions
	3.2 Acronyms

	4. Predefined types
	5. Verification methodology
	5.1 Combinational verification
	5.2 Sequential verification

	6. Modeling hardware elements
	6.1 Edge-sensitive sequential logic
	6.2 Level-sensitive sequential logic
	6.3 Three-state logic and busses
	6.4 Combinational logic
	6.5 ROM and RAM memories

	7. Pragmas
	7.1 Attributes
	7.2 Metacomments

	8. Syntax
	8.1 Design entities and configurations
	8.2 Subprograms and packages
	8.3 Types
	8.4 Declarations
	8.5 Specifications
	8.6 Names
	8.7 Expressions
	8.8 Sequential statements
	8.9 Concurrent statements
	8.10 Scope and visibility
	8.11 Design units and their analysis
	8.12 Elaboration
	8.13 Lexical elements
	8.14 Predefined language environment
	Annex A
	Annex B
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	Z

	Annex A (informative) Syntax summary
	Annex B (normative) Synthesis package RTL_ATTRIBUTES
	Index
	A-M
	0-Z

