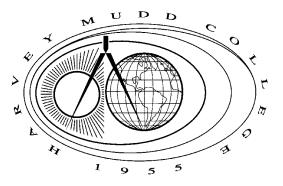
A Powering Unit for an OpenGL Lighting Engine

David Harris

David_Harris@hmc.edu

Harvey Mudd College

Claremont, CA



35th Asilomar Conference on Signals, Systems, and Computers November 2001

Introduction

OpenGL Transformation & Lighting Pipeline

- Specular lighting and spotlights require powering operation $P = A^B$
- $A \in [0, 1], B \in [1, 128]$
- Results must be accurate to color depth (8-10 fractional bits)

Use identity $A^B = 2^{B \log_2 A}$

- Requires log table lookup, multiplication, and exponent table lookup
- Log tables are very large for 8-10 bit accuracy
- Accuracy requirements increase as A approaches 1
- Partition log table into subintervals with increasing accuracy

Synthesis results

Algorithm

Compute $P = A^B = 2^{B \log_2 A}$

- $A \in [0, 1], B \in [1, 2^{b}]$ provided as IEEE single-precision FP numbers
- $P \in [0, 1]$ is faithfully rounded to *p*-bit fraction and expressed as FP number

 $L = log_2 A$

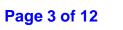
- Use n_1 bits of significand field of A to look up fractional part of logarithm L
- Exponent field of A becomes integer part of logarithm L

 $X = B \bullet L$

• Use n_2 fractional bits of *B* and n_3 fractional bits of *L*

 $P = 2^{X}$

- Use n_4 fractional bits of X to look up significand of P to $n_5 = p$
- Use integer part of X to determine exponent of P



Error Analysis

Finite numbers of fractional bits introduce errors at each step

- n_1 bits of A index log table error ε_1
- n_2 bits of *B* provided to multiplier error ε_2
- n_3 bits of L produced by log table error ε_3
- n_4 bits of X returned by multiplier error ε_4
- n_5 bits of *B* returned by exp table error ε_5

Instead of computing

$$P = A^B = 2^{B \log_2 A}$$

Actually compute

$$P = 2^{(B+\varepsilon_2)(\log_2(A+\varepsilon_1)+\varepsilon_3)+\varepsilon_4} + \varepsilon_5$$

Choose *n*'s so error $|P - A^B| < 2^{-p}$

Powering Unit

Table Sizes

Taylor series approximations can be used to find impact of n's on error

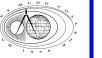
$$P = 2^{(B + \varepsilon_2)(\log_2(A + \varepsilon_1) + \varepsilon_3) + \varepsilon_4} + \varepsilon_5$$
$$\left| P - A^B \right| \approx \left| A^B \left(\varepsilon_1 \frac{B}{A} + \varepsilon_2 \log_2 A \ln 2 + \varepsilon_3 B \ln 2 + \varepsilon_4 \ln 2 \right) + \varepsilon_5 \right| < 2^{-p}$$

After some analysis, choose:

- $n_1 = p + b + 1$
- $n_2 = p + 3$
- $n_3 = p + b + 4$
- $n_4 = p + 2$
- $n_5 = p$

bits of A to index logarithm table bits of B for multiplier bits of L for multiplier bits of X to index exponent table P faithfully rounded to p bits

For p = 10, b = 7, this requires a log table of 256k entries



Powering Unit

David Harris

A Closer Look at Logarithm Table Errors

Log lookup must be very accurate for A just under 1

• $L = log_2 A$ will have many leading 0's that cancel when multiplied by large B

•
$$|P-A^B| \approx \left|A^B\left(\varepsilon_1\frac{B}{A}+\varepsilon_2\log_2A\ln 2+\varepsilon_3B\ln 2+\varepsilon_4\ln 2\right)+\varepsilon_5\right| < 2^{-p}$$

Range of A	maximum value of BA^{B-1}
[0, 0.5)	1.07
[0.5, 0.75)	1.71
[1-2 ⁻² , 1-2 ⁻³)	3.15
[1-2 ⁻³ , 1-2 ⁻⁴)	6.08
[1-2 ⁻⁴ , 1-2 ⁻⁵)	12.0
[1-2 ⁻⁵ , 1-2 ⁻⁶)	23.7
[1-2 ⁻⁶ , 1-2 ⁻⁷)	47.3
[1-2 ⁻⁷ , 1-2 ⁻⁸)	77.9
[1-2 ⁻⁸ , 1)	128

Maximum weight on ε_1 term (for b = 7)

Powering Unit

David Harris

November 2001

Multiple Logarithm Tables

The maximum weight on the ε_1 term increases with A

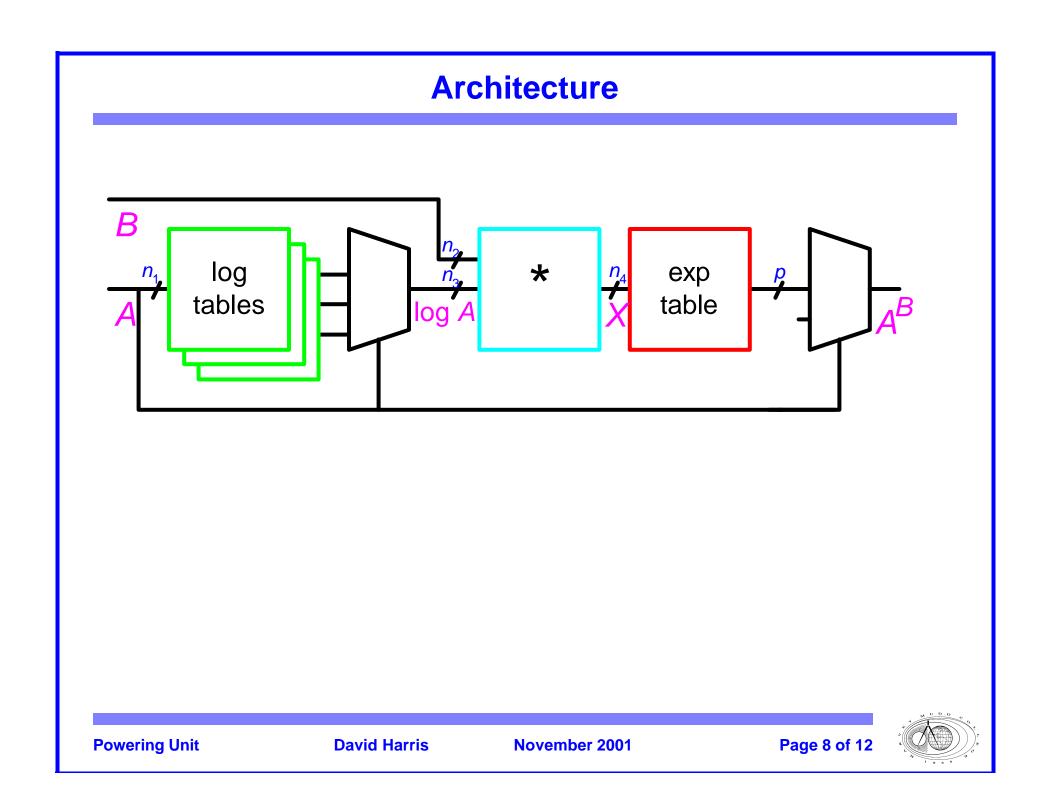
• Thus more bits of A are required to index the table for larger values of A

Partition log table into b + 2 subintervals covering progressively smaller ranges

- Table T_i covers A in range $[1-2^{-i}, 1-2^{-(i+1)})$ for i = 0...b
- Table *T*_{*b*+1} covers [1-2^{-*b*}, 1)
- Leading *i* bits of *A* are all 1's
- Index table with next $\tilde{n}_1 = p$ bits

Now we only need b + 2 logarithm tables of 2^p entries each

• For p = 10, b = 7, this requires 9k total entries



Implementation

Design implemented in Verilog and compared against C reference model

- Parameterized by *p* and *b*
- Tested for p = 8, 10; b = 7 (OpenGL application)

Verification

- 6 million directed and random test vectors used to verify accuracy
- For p = 8, maximum error = $0.0029 < 2^{-p} = 0.0039$
- For p = 10, maximum error = 0.00076 < $2^{-p} = 0.00098$
- Faithful rounding confirmed for all test cases

Source Code

- Verilog and C models are on the web
- Harvey Mudd College Open Source Floating Point Project
- www.hmc.edu/chips

Synthesized to LSI G12-p 180 nm standard cell library

Synthesis Results

Latency:

- 7.87 ns for *p* = 8
- 9.62 ns for *p* = 10
- Could be partitioned into three stage pipeline

Area:

Powering Unit Gate Count

Module	<i>p</i> = 8	<i>p</i> = 10
Log Tables	14 867	72 734
Exp Tables	1 823	6 181
Multiplier	2 317	3 035
Random Logic	1 176	1 669
Total	20 183	83 619

• At an estimated 20-25K gates / mm^2 , area is 1 to 4 mm^2

Powering Unit

ROMs

Synthesized tables are very inefficient

Table Bit Counts

Table	Size		<i>p</i> = 10, <i>b</i> = 7
logarithm	$2^{p}[(b+2)(p+4)]$	28 416	132 096
exponent		8 192	40 960

A ROM generator would greatly reduce table area

• Estimated unit size < 0.6 mm² for p = 10

Conclusion

Hardware implementation of Powering Unit

- Computes $P = A^B$ for $A \in [0, 1], B \in [1, 128]$
- Optimized for OpenGL lighting calculations with 8-10 bits of accuracy
- Useful for other low-precision applications

Use identity $A^B = 2^{B \log_2 A}$

• Reduce size of logarithm tables by partitioning into subintervals

Verilog and C models used for verification and synthesis

• For 10-bit accuracy:

9 1024-entry log tables and one 2048-entry exponent table area = 4mm² synthesized or about 0.6 mm² with ROMs latency: 9.62 ns

Source code available through HMC Open Source Floating Point Project

Powering Unit

