
1.  ABSTRACT
This paper describes the functional verification
effort during a specific hardware development
program that included three of the largest
ASICs designed at Nortel. These devices
marked a transition point in methodology as
verification took front and centre on the critical
path of the ASIC schedule. Both the simulation
and emulation strategies are presented.
The simulation methodology introduced new
techniques such as ASIC sub-system level
behavioural modeling, large multi-chip simula-
tions, and random pattern simulations. The
emulation strategy was based on a  plan that
consisted of integrating parts of the real soft-
ware on the emulated system. This paper
describes how these technologies were
deployed, analyzes the bugs that were found
and highlights the bottlenecks in functional ver-
ification as systems become more complex.

1.1  Keywords
ASIC Verification, Simulation, Emulation

2.  INTRODUCTION
This paper describes the ASIC functional verification
techniques that were deployed on a recent large hardware
development program. It details the simulation and
emulation methodologies and provides an in-depth analysis
of the bugs that were found with both technologies. Finally,
some of the bottlenecks of each technology are presented
with ideas on how to overcome them in the future.

The project consisted of three new circuit boards connected
via a high speed backplane using a proprietary protocol.   A
full system consists of 26 boards. Various combinations of
the three ASICs reside on each of the circuit boards. These
ASICs interface with high speed memories and powerPC
microprocessors. For the purposes of this paper, we will refer
to the chips as Alpha, Beta and Gamma. They were
fabricated in a 0.25 micron process and had gate counts of
482K gates, 824K gates and 635K gates, respectively.

3.  Verification Methodology
The simulation methodology shown in figure 1, consisted of

writing a behavioural model (BEH) for each of the three
devices. A conformance test-plan (CTP) document was
written for each ASIC, enumerating all the features and
functions that required verification. Based on this document,
a regressionable testbench suite was written for each ASIC.
Initially, the testbenches were developed using the
behavioural model and then as the RTL stabilized, both
platforms were used for writing testbenches. [1]

Near the end of the ASIC testbench effort, system testbench
development began in parallel using the behavioural models.
The objective of these simulations was to prove the
interfaces between ASICs and verify the protocol error
conditions. Only functionality that required multiple ASICs
to prove correct operation was simulated at this level.

As the directed ASIC and system simulation efforts
completed, the TLSC (Top Level Simulation Complete)
milestone was declared; however the bug find rates remained
high. It was apparent that the feature driven test-plan had not
sufficiently verified interactions when multiple features were
enabled in combinations. To address these holes, an
Extended Simulation Plan (ESP) was developed in order to
create random and multi-feature tests and to target those
lines of code that had not been simulated based on code-
coverage reports. These tests proved extremely valuable in
finding obscure bugs.

Figure 1.  ASIC Development Gantt Chart

During the TLSC to SRTL (start of layout) interval, timing
analysis, floorplanning, DFT and synthesis were completed.

3.1  Behavioural Model
The ASIC behavioural(BEH) models were written in
Verilog, were pin compatible with the RTL model and
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implemented nearly all of the device functionality. They
were written at a high level of abstraction, manipulating
entire transactions rather than individual signals, and thus
required less effort to write and simulated faster than the
RTL. As the latency through the behavioural model was not
the same as that of the RTL implementation, testbenches
had to be tolerant of both sets of timing.

Early in the project, it was unclear how manageable full
RTL level simulations of a single ASIC would be. In
addition, considering the size of the design teams and the
tight schedule, there was concern over the amount of time it
might take to integrate the partially tested RTL blocks at the
ASIC top level. Therefore, the behavioural models were
written at the ASIC sub-system level. That is, the
behavioural model was structurally decomposed into the
same sub-systems as the RTL code for the ASIC. This
approach enabled the possibility of mixed BEH / RTL chip
level simulations. By modeling at the sub-system level, the
verification team helped to formalize the internal interface
specifications and maintain adherence to them. Finally, by
modeling at this level, the verification team was able to
deliver a ready-made test environment to each sub-system
designer. These benefits enabled top level RTL integration
times of between a day to a week from the first attempts at
ASIC level simulations to successful testbench runs.

Figure 2.  Sub-System Level Modeling

The choice to model at a lower level of hierarchy meant that
the behavioural model simulation speed gain was limited by
the additional simulation events from the internal interfaces.
Furthermore, this approach necessitated additional work in
order to track changes in the internal interfaces.
Other benefits of the behavioural model were that it found
discrepancies between the RTL and the specification, as it
provided an alternative view of the specification. Several
times, a testbench initially developed on the RTL failed on
the behavioural model due to an error in the RTL that was du-
plicated in the testbench; these would otherwise have gone
undetected in simulation. The most important benefit of the
model, however, was that it allowed the verification teams to
become thoroughly familiar with the functionality of the de-
vices very early in the project.

3.2  Emulation Methodology
The emulation system implemented 2.4 Million ASIC gates
in a total system configuration of 5 circuit boards and
multiple instances of each device. Each ASIC was reduced
in size from the original by removing duplicated logic, non-
mission mode logic, and in the case of the Beta, by

synthesizing with area constraints and relaxed timing. The
emulation elements were filled to capacities of between
68% and 97%, with most (60%) being filled to greater than
90% capacity. In some cases, this high utilization made it
difficult to insert probes for debugging problems.

Production quality firmware was used on the circuit cards.
Virtually all of this firmware is being reused in the
production system. The firmware staff noted that the
emulation environment was the most stable prototype
platform available to them for developing their code.

Special high level software was written for the emulation
platform in order to prove the hardware functionality. The
software was rolled out in three phases (see figure 1) :

A. major features of the ASICs were tested and a software
development environment was established.

B. every feature of each ASIC was tested in a stand alone
fashion.

C. every feature of each ASIC was tested repeatedly and in
random combinations over long durations.

The requirements specification of the software tests was
driven primarily by the ASIC teams. Approximately 40% of
the high level software that was developed is considered
production code that will be reused in the real system. In
addition, the software designers reported that several design
years worth of experience on the system was gained and that
in later development the most productive software designers
were those that had worked with the emulation system.

Overall, the total number of netlist revisions that was
emulated was 32 Alpha, 18 Beta and 16 Gamma. New
netlists were compiled as functionality was added or bug
fixes were addressed in the design. The average time to
process each netlist (fully compile and go in-circuit) varied
from 3 weeks with the first full netlists, to 12 hours with the
final full netlists.

4.  Project Retrospective
The graph in figure 3 shows a breakdown of the effort spent
between the start of design (SRTD) and start of layout
(SRTL) milestones, averaged across all three devices.

The lower sections represent tasks not associated with
functional verification, the remainder is functional
verification. The slice "RTL and block test" in figure 3
includes block and sub-system level design and testbench
effort. At this level of hiearchy, it was not possible to
separate these two tasks. In effect a portion of this slice
could be grouped with verification. From figure 3, it is clear
that functional verification represents well over 50% of the
effort from SRTD to SRTL.

It is interesting to note that on the Alpha and Beta ASICs,
functional verification was on the critical path. Timing clean
and floor-planned netlists were available well in advance of
their actual SRTL dates. In other words, the tape out was
delayed in order to find and address functional bugs. As
devices become more complex, functional verification is
increasingly on the critical path[2,3].
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Figure 3.  Breakdown of Effort

5.  Bug Analysis
Accurate bug information was kept for emulation bugs from
the beginning of the project and for simulation bugs from
TLSC onwards. Prior to TLSC, it is difficult to separate
bugs from code development and evolution. Each bug was
classified by severity according to the effect if the bug had
been left unfound in the actual silicon:

minor a simple software or board fix exists to workaround
the bug

respin the chip could be used for lab work and initial soft-
ware development with the bug present, but would
have to be respun prior to shipping the product to the
customer

DOA (dead on arrival) the device would be of limited use
in the lab

Figure 4.  Bug Breakdown by Severity

Figure 4 shows a break-down of the bugs by severity. It is
interesting to note that only a small number of bugs fit into

the DOA category. The last DOA bug was found three
months before the SRTL of that device

The designers were asked to rank the probability that each
bug could have been found by an alternate technology on a
scale of high, medium or low. The results are summarized in
tables 1 and 2. Note that two bugs were found almost
simultaneously by both simulation and emulation, and have
thus been included under both categories.

5.1  Emulation Bugs
In table 1, we summarize the severity and probability of
being found by simulation for each of the emulation bugs :

Table 1: Emulation Bug Classification
Overall, 47 bugs were found through emulation (24 Alpha,
13 Beta, 10 Gamma). The severity of the emulation bugs
was classified as 4 DOA, 28 respin and 15 being minor
problems. Of the emulation bugs, 34% had a high
probability of being found in simulation, 43% had a
medium probability and 23% had a low probability of being
found by simulation. Of the bugs that had a low probability
of being found in simulation, 55% would have resulted in a
respin and 45% were minor. All three ASICs had at least
one bug in the category: respin severity and low probability
of finding it with simulation.

5.2  Simulation Bugs
In table 2, we summarize the severity and probability of
being found by emulation for each of the simulation bugs.

Table 2: Simulation Bug Classification
Overall, 63 bugs were found by post-TLSC simulation (6
Alpha, 21 Beta, 36 Gamma). The severity of these
simulation bugs was classified as 3 DOA, 38 respin and 22
minor. Of the simulation bugs, 13% had a high probability
of being found in emulation, 33% had a medium probability
and 54% had a low probability of being found by emulation.
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Of the bugs that had a low probability of being found in
emulation, 53% were respin severity and 3% were DOA
severity. All three ASICs had at least one bug in the
category : respin or DOA severity and low probability of
finding it with emulation.

5.3  Coverage Overlap
In comparing the three devices, it is interesting to note the
predominance of bugs found by emulation on Alpha and by
simulation on Gamma. This is due to the fact that Alpha
completed functional design several months ahead of the
other two devices. A conscious decision was made to rely
on early emulation, rather than extend the simulation effort
on Alpha. Gamma, on the other hand, had the most
simulation effort. As seen in tables 1 and 2, there is a strong
correlation between where the effort was invested and where
the bugs were found.

Simulation and emulation both have certain characteristics
that make them better suited to finding certain types of bugs.
These characteristics are summarized in table 3 :

Table 3: Characteristics of Emulation and Simulation
From the low probability slices, in figure 5, it is clear that
there are bugs that have a low chance of being found with
only one verification technology.

Figure 5.  Alternate Bug Find Probability

Some of the bugs that are difficult to find in emulation are

related to external memory timing violations under error
cases. Such violations would not be detected in emulation
unless they actually corrupt memory contents, which is
unlikely with the reduced clock speed. Others are related to
the fact that only a partial system is being emulated; thus
certain traffic scenarios are not possible. Still others relate to
scenarios that are difficult to setup from high level software.

The throughput afforded by emulation can find bugs that
would require extremely long simulations. Since the
emulation system used actual circuit boards, system level
interconnect problems were found. Additionally, software
usage of the hardware exercised the chips in manners the
hardware verification team had not considered.

In table 4, we have classified the bugs found by emulation
both by that attribute of emulation which enabled the bug to
be found as well as by the probability that it could have been
found by simulation. Those bugs in the right hand column
are especially significant as they were very unlikely to have
been found by simulation. There was one noteworthy bug in
the "Board Environment" row, in the low column, which
was not found earlier in simulation because the electrical
characteristics of a certain bus were not correctly modeled
in the simulation environment. The bug in the "Gate Level"
row with low probability of being found in simulation
relates to a problem in the re-synchronization of signals
across an asynchronous boundary. This bug manifested
itself in emulation, only during long traffic soaks.
Interestingly, there are a large number of bugs in the
"Richness" row related to richness of stimulus afforded by
real software running on the emulation platform.

Table 4: Classification of Emulation Bugs

6.  Bottlenecks
In order to compress the ASIC verification interval, it is
important to understand where the true bottlenecks lie.

6.1  Simulation Time
There are two very different areas where simulation time
impacts productivity : testbench development and running
the regressions. Table 5 captures some simulation speed
data for Gamma, which is also typical for the other devices.
All simulations were done in Verilog and the data is
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averaged for Sparc-20 and Sparc Ultra-1 class machines :

Table 5: Simulation Speed Data
A behavioral modeling technique that was successfully
applied was one which we call "virtual interfacing". When
modeling a device that receives frames serially, it is possible
to bypass the physical interface by transferring entire frames
directly into the model with a single simulator event. Using
this technique on the high speed interfaces, eliminated the
simulation events associated with the high speed clocks and
resulted in significant simulation speedups (right hand
column in table 5). For certain tests involving the physical
aspects of the interface, this technique was disabled. The
behavioural regression used a mixture of real and virtual
interfaces.

From the data in table 5, several observations can be made.
The compile/run time for a RTL simulation is on the order
of a few hours and with a behavioural model with virtual
interfaces this is ten times faster. The typical ASIC
testbench consisted of between two and three independent
tests that could generally be developed in isolation. Thus
with the behavioural model with virtual interfaces, the
average simulation iteration time was approximately 5.5
minutes. With RTL this interval was 50 minutes. Therefore,
simulation times are manageable even for extremely large
devices, especially with behavioural models.

The second aspect of simulation consists of regularly
running the regression suite during the later phases of the
design cycle. The time required to run the regression is
limited by two factors : the number of workstations on
which to distribute the jobs and the duration of the longest
testbench. Given this, a complete regression for any of the
devices could essentially be run over a weekend, if spread
across about 10 workstations. Here again, there isn’t a real
bottleneck : given sufficient workstations, simulator licenses
and judicious sizing of the testbenches, the regression
interval can be managed.

6.2  Testbench Development
The real bottleneck in functional verification was the
development and debugging of the testbenches. From figure
3, we see that the ASIC, system and extended simulation
testbenches alone represented over a third of the total effort.
Testbench coding can not begin until a platform for writing
and debugging testbenches is in place. In this case the

a.Behavioural regression uses a mixture of normal and
virtual interfaces.

platform was initially the behavioural model. In order to
compress the duration of the testbench coding interval, a
large team size was applied to the task. Figure 6 shows the
testbench team sizes for Beta and Gamma over the course of
the project :

Figure 6.  Testbench Team Size

Ramping-up the necessary people was a challenge. The
testbench coding team consisted of behavioural modelers,
dedicated testbench coders, RTL designers and contractors.
For people joining the project as testbench coders, reading
the ASIC specifications and learning about the system
operation required from several weeks to over a month. New
people often required help when debugging obscure
problems, whether they lay in the testbench, behavioural or
RTL code. We found that a dedicated verification team that
started by writing behavioral models was effective in
enabling a large, productive team to be built.

6.3  Emulation Bottlenecks
The emulation process can be broken up into three distinct
phases : going in-circuit, debugging and recompiling the
netlists.

Going in-circuit for the first time requires a target board to
be manufactured and the first in-circuit netlist needs to be
compiled. Each target board required about two person
months of effort to produce. Each netlist took about three
weeks to compile the first time. Once the netlist was
compiled, an interconnection from the emulator to the target
board was created. This typically took about one week to
design and test.

The major bottleneck in debugging was the amount of time
it took to add probes to the netlists. Adding probes would
typically take between an hour and a day depending upon
the utilization of the emulation hardware.   To completely
debug a problem several iterations of adding probes was
often required.    Another bottleneck in the debugging cycle
was the difficulty of replicating problems that arose. This
was due to the need to have identical software loads, ASIC
netlists and starting conditions.

After the first compile of a netlist the emulation team could
start writing scripts to automate the compile process. With
each compile of the ASIC, the scripts were improved until
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compiles were being completed in under 12 hours. Since the
compiles were done over the network, LAN traffic had a
major effect on the time to compile an ASIC. With no
network traffic the compiles could be completed in under 6
hours.

Another major bottleneck in emulation is the number of
platforms available for development and debugging. In this
project, software development, firmware development, bug
tracing and lab issues all competed for the same resource.
Had multiple platforms been available, then these tasks
could have been parallelized and overall efficiency would
have improved. However, the high cost of emulation
equipment makes replicating the platform impractical. This
remains one of the most serious impediments to
productivity improvement using emulation.

7.  Looking Forward

7.1  Simulation
We observe that the dominant activities in testbench
development are the intellectual process of understanding
the device behaviour, the feature to be tested and
interpreting the results of simulation runs. As a result, the
opportunity for productivity improvement through faster
simulation or coding productivity tools is limited. Faster
simulators are certainly welcome and will provide an
incremental improvement in productivity, but they will not
drastically reduce the overall verification effort.

Verification productivity tools largely address shortcomings
in HDLs and facilitate the development of random tests.
These tools may provide incremental improvements in
testbench coding productivity, however, they do not address
the issue of ramping-up a large verification team who
understand the system.

In order to address the large testbench team problem, two
things can be done. First, these people should be involved in
the project as early as possible in order to learn about the
system, either as behavioural modelers, RTL designers,
firmware developers, etc. Second, good teaching material
must be created in order to help new people understand the
system being designed. This can be achieved through
explanatory documentation, tutorials, walk-through
documents or debugging guides.

Model Checking formal verification tools may provide a
productivity gain for block level verification where the tools
can handle the state space. It is unlikely that model checking
will be applicable at the ASIC or system level on a project
of this size, because of the state explosion problem. From
isolated tests we have found this technology has the
potential to find obscure bugs in communicating state
machines early in the design cycle.

7.2  Emulation
The increased capacities of modules in newer emulation
systems should decrease the time to compile a netlist for the
first time, as partitioning will be much easier. Newer
emulation systems are also evolving towards 100%

visibility of all netlist nodes. This should greatly improve
the debug cycle because probing will no longer require
recompilation Finally, compile effort with the newer
systems is also reduced, and faster workstations should
allow for faster recompiles.

Given these improvements, software development and
hardware debug, will be limited by the number of emulation
platforms available prior to tape-out. Without a significant
reduction in cost, the bottleneck associated with sharing a
single platform between multiple users will remain an issue
in using this technology.

8.  Conclusions
Several key observations emerged during the course of the
design of the ASICs. First, was that functional verification
represents the largest single task in the design to layout
interval.   Second, based on the high bug find rates after the
TLSC milestone, that a targeted, feature driven test plan is
not sufficient when complex feature interactions are present.
The directed tests must be supplemented with extensive
random and heavy traffic tests.

We observed that there is value in emulating as early as
possible, but the system should not be handed over to
software staff until high quality netlists are available and all
known lab issues have been resolved. With increased
simulation coverage, the number of bugs that will be found
in emulation is reduced. However, with devices of the
complexity of those on this project, it appears that
regardless of how much simulation is done, there is a
significant probability that some respin severity bugs will
remain, some of which can be found through emulation.
Real software interacting with the ASICs generates a
richness of stimulus that is difficult to achieve in simulation.

Finally, there is no revolutionary new verification
technology on the horizon. Simulation will remain the
workhorse for functional verification for the foreseeable
future. Faster simulators will enable simulation to track
ASIC growth, but will not significantly reduce the overall
effort devoted to functional verification.
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