

Model: spring1d.va			
`include "constants.h" `include "discipline.h"	Force in Newtons		
<pre>module springld(n1,n2); inout n1,n2; kinematic n1,n2;</pre>	1 Newton = force to accelerate 1 Kg at 1 m/s		
<pre>parameter real k = 3 from // spring constant given ir</pre>	(0:inf); n n/m		
<pre>parameter real 1 = 2.5 fro // stretch value of string</pre>	om (0:inf);		
// coordinate system - X =	0, string is unstretched		
analog			
F(n1,n2) <+ k*(Pos(n1,n2	2)-1);		
endmodule			
4/16/2003	BR	6	

include "constants.h" include "discipline.h"		
//velocity monitor		
<pre>module velmon(p,v); inout p,v; kinematic p; kinematic_v v;</pre>		
// find velocity		
analog		
Vel(v) <+ ddt(Pos(p));	
endmodule		

Homework

- Duplicate the 2-spring simulation on www.myphysics.com. Turn in a screenshot of a 'awd' plot of block position 1 versus block position 2 for several cycles.
- Duplicate the moving coil simulation using the parameters given.
 Ignore Rc, Lc of the coil
 - Write an EMF module that takes in spring position, and outputs induced magneto force as a damping force on the motion of the spring (this force is very small compared to the mechanical damping force).
 - If the mechanical damping force is removed, how long does it take the spring to damp to 25% of its maximum value?
 - Capture a screenshot that shows the induced voltage (with mechanical damping) as shown on the previous page. Also capture a screenshot that shows the spring being damped purely by the induced magneto force.

4/16/2003

BR

21

