
1

1/24/2003 BR 1

Type Definition Examples

utilities directory has a package called memory that defines
types/functions/procedures that are useful for memory
modeling

TYPE Bit_Memory IS ARRAY (Natural RANGE <>) OF Std_Ulogic;

TYPE Nibble_Memory IS ARRAY (Natural RANGE <>) OF Std_Ulogic_Vector(3 DOWNTO 0);

TYPE Byte_Memory IS ARRAY (Natural RANGE <>) OF Std_Ulogic_Vector(7 DOWNTO 0);

TYPE Word_Memory IS ARRAY (Natural RANGE <>) OF Std_Ulogic_Vector(15 DOWNTO 0);

TYPE LongWord_Memory IS ARRAY (Natural RANGE <>) OF Std_Ulogic_Vector(31 DOWNTO 0);

1/24/2003 BR 2

Multi-dimensional Array

TYPE Byte_Memory IS ARRAY (Natural RANGE <>) OF Std_Ulogic_Vector(7 DOWNTO 0);

This is an example of a multi-dimensional array type declaration.

Only one array index range can be unconstrained :
i.e. “Natural Range <> “

The other ranges must be constrained. Would be illegal to define the
type as:

TYPE A_Memory IS ARRAY (Natural RANGE <>) OF Std_Ulogic_Vector(Natural RANGE <>);

unconstrained constrained

1/24/2003 BR 3

Array Assignments

When assigning one array to another, the slice size must be
the same as well as the data type.

TYPE Byte_Memory IS ARRAY (Natural RANGE <>) OF Std_Ulogic_Vector(7
DOWNTO 0);
TYPE Word_Memory IS ARRAY (Natural RANGE <>) OF Std_Ulogic_Vector(15

DOWNTO 0);

variable a_mem: Byte_Memory(0 to 1023);
variable b_mem: Byte_Memory(0 to 2047);
variable c_mem : Word_Memory (0 to 511);

a_mem (3 to 10) := b_mem (11 to 18);

a_mem (20 to 30) := b_mem (20 to 40);

c_mem(2) := a_mem (2);

legal, slice size is the same.

illegal, slice size is different.

elements are different.

1/24/2003 BR 4

RECORD types
A record type is a composite object type whose elements are
named:

type myrec is record
some_real: real;
some_int: integer;
a_string: string (1 to 5);
a_bool: boolean;

end record;

Usage example:
variable tmp; myrec;
.....
tmp.some_real := -30.4
tmp. some_int := 10;
tmp.a_string := “Hello”;
tmp.a_bool := TRUE;

Signals can be record types!!! Can be helpful for complex
modeling.

1/24/2003 BR 5

Assigning Default Values to a Record Type

type myrec is record
some_real: real;
some_int: integer;
a_string: string (1 to 5);
a_bool: boolean;

end record;

variable tmp: myrec := (1.0, -1, “hello”, TRUE)

OR
variable tmp: myrec := (some_int => -1,

a_string => “hello”,
some_real => 1.0,
a_bool => FALSE);

Positional assignment
(order is same as in
record declaration)

Using a name list,
order is not important
because record field
names are used for
assignment

1/24/2003 BR 6

Example: Tracking Transition Counts

Signal transition counts are useful in gate-level simulations for
power estimation programs.

Each signal transition consumes power.

Transient computations (transient gate level switching) can be a
large source of power consumption in some cases.

Problem: Have a netlist that has D-flip flops (DFFs) + LUT4 (4-
input lookup tables).

1. Would like to track the total number of signal transitions over
a period of time.

2. Would like to distinguish between DFF and LUT4 transitions.

2

1/24/2003 BR 7

power Package
package pwr is
--- power functions

type power_model;
type power_ptr is access power_model;

type power_model is
record

iname:line;
tcnt:integer;
vcnt:integer;

next_model: power_ptr;
end record power_model;

shared variable first_model: power_ptr := null;
shared variable dopwr: boolean := FALSE;
procedure report_power(fname:String; samples: integer);
procedure clear_stats;

end package pwr;

Pointer type to our record
data type

Record type for tracking transitions.

‘tcnt’ incremented if DFF
transition, ‘vcnt’ incremented if
LUT4 transition.

‘iname’ is instance name.

‘next_model’ is pointer to next
record.

Head of linked list of
power_model records.Global variables

1/24/2003 BR 8

Global Variables

• A variable can be declared outside of a procedure, function
or process only if it is declared as shared
– Will make this variable visible to all procedures, functions,

processes

• Useful for keeping track of statistics, global data structures
• Must remember: cannot predict the order in which a

global variable will be updated if multiple processes
update it, and the processes are all triggered by the same
event
– Order of process execution for simultaneous event triggering is

simulator dependent

1/24/2003 BR 9

Modeling Approach
• At startup, each instance in our netlist will create a record

of type ‘power_model’.
– Insert this into a linked list of all such power_model records
– A global shared variable will be used to point to the head of this

linked list
• Each time a signal transition occurs on an input, increment

a counter in the power_model
– For DFFs, increment ‘tcnt’
– For LUT4s, increment ‘vcnt’.

• Can enable/disable transition counter via a global variable
called dopwr
– Only increment transition counts if this variable is TRUE

• Print transition stats using ‘report_power’ procedure
• Clear stats using ‘clear_stats’ procedure

1/24/2003 BR 10

dfr modellibrary ieee; use ieee.std_logic_1164.all;
library power; use power.pwr.all;

architecture a of dfr is
begin
process(clk2,rst3)

variable model: power_ptr := null;
begin

if (model = null) then
model := new power_model'(new string'(a'instance_name), 0, 0, first_model);
first_model := model;

end if;

if (rst3 = '0') then
q <= transport '0' after gdelay;

elsif (clk2'event and clk2 = '1') then
q <= transport data1 after gdelay;
-- increment tcnt of DFFs for EVERY clock edge
if (dopwr = TRUE) then model.tcnt := model.tcnt + 1;
end if;

end if;
end process;

end a;

‘new’ allocates new record
structure.

link into list of all such
record structures

‘instance name returns
simulator dependent name

dopwr true if statistics keeping
turned on, increment transition
count

1/24/2003 BR 11

Other Comments

process(clk2,rst3)
variable model: power_ptr := null;
begin
if (model = null) then
model := new power_model'(new string'(a'instance_name), 0, 0, first_model);
first_model := model;

end if;

The code below allocates the new record structure and links into
the global list.

Note that we have no guarantee of what order the processes corresponding
to the DFRs/LUT4s are initially executed in so there is no particular order of
the power records on the global linked list.

The code is executed only once since ‘model’ will be non-null afterwards.
The initial value of ‘first-model’ global variable is null, so last record will
have a ‘next_model’ value of NULL.

1/24/2003 BR 12

‘instance_name Attribute
process(clk2,rst3)

variable model: power_ptr := null;
begin
if (model = null) then
model := new power_model'(new string'(a'instance_name), 0, 0, first_model);
first_model := model;

end if;

“a” is the architecture name of this entity.

a’instance_name returns a simulator dependent string that
describes the hierarchical path from the root of the design
heirarchy down to this component architecture.

‘instance_name can be used with anything other than local
ports or generics of a component declaration.

3

1/24/2003 BR 13

LUT4 Entity
library IEEE; use IEEE.std_logic_1164.all;

entity lut4 is
generic (

gdelay: time := 5 ns;
fmap: std_logic_vector(15 downto 0):= "XXXXXXXXXXXXXXXX");

port(A, B, C, D : in std_logic; O : out std_logic);

end lut4;
LUT4 is a 4-input LookUp table (such as used in Xilinx, Altera
FPGAs).

Equivalent to a 16 x 1 SRAM (inputs A,B,C,D are address lines
where A is MSB, D is LSB).

Generic ‘fmap’ used to specify contents of LUT4.

1/24/2003 BR 14

library IEEE; use IEEE.std_logic_1164.all;
library power;use power.pwr.all;
architecture a of lut4 is
begin
process (A,B,C,D)
variable index, lastval:integer;
variable lasttrig: time := 0 ns;
variable model: power_ptr := null;
begin

if (model = null) then
model := new power_model'(new string'(a'instance_name),0, 0, first_model);
first_model := model;

end if;
index := 0;
if (A = '1') then index := index + 8; end if;
if (B = '1') then index := index + 4; end if;
if (C = '1') then index := index + 2; end if;
if (D = '1') then index := index + 1; end if;

O <= transport fmap(index) after gdelay;

if (lastval /= index and ((now - lasttrig) > 1 ns)) then
if (dopwr = TRUE and (not nopower)) then model.vcnt := model.vcnt + 1;
end if;
lastval := index; lasttrig := NOW;

end if;
end process;

end a;

LUT4 Architecture

Compute LUT4 address

Only count transition if
current address is different
from last address. Filter
spikes < 1 ns.

1/24/2003 BR 15

Traversing the Record List

procedure clear_stats is
variable head_ptr: power_ptr;
begin
head_ptr := first_model;
while head_ptr /= null loop

head_ptr.tcnt :=0;
head_ptr.vcnt :=0;
head_ptr := head_ptr.next_model;

end loop;
end;

clear_stats procedure is used to zero out statistics after
recording some signal transitions.

report_power procedure traverses list in a similar fashion
except it sums the transition counts and prints out values to
screen

1/24/2003 BR 16

package test is
function foo (a: integer) return integer;
CONSTANT aconst: real := 3.14;

end test;

package body test is
CONSTANT PCONST: integer := -1;

function foo (a: integer) is
begin
return ((a+1) * PCONST);

end foo;
end test;

Comments on Packages
Packages consists of a package declaration and a package body.

Any subprogram (function, procedure) or variable that is to be public to
users of this package must be in the declaration.

If an element is not in the declaration but is in the body, then the element
can only be used by other elements in the body – it is not ‘visible’ externally
of the body.

Public

Private

foo implementation in
package body

1/24/2003 BR 17

Package Dependencies
• If an entity/package/configuration uses a package, and that

package declaration is changed, then must recompile the
the entity/package/configuration that uses the package
– If only package body changes, then don’t have to recompile as

long as package declaration and package body are in different files.

• The value of a CONSTANT does not have to be specified
in the package declaration:

package test is
CONSTANT PI: real;

end test;

package body test is
CONSTANT PI: real := 3.14159;

end test;

Called a deferred
constant. Can change this
value without having to
recompile dependent
packages, entities,
configurations.

1/24/2003 BR 18

An Example Procedure from memory package
PROCEDURE MemInit (MemoryName : INOUT Byte_Memory;

FillBit : Std_Ulogic) IS

BEGIN

MemoryName := (MemoryName'range =>

(MemoryName(MemoryName'left)'range => FillBit));

END MemInit;

INOUT - needed if you read and write to parameter.

MemoryName’range – returns range (i.e. 0 to 127).
MemoryName(MemoryName’left) returns left most element.

generic way of writing:
MemoryName := (0 to 127 => (7 downto 0 => Fillbit))

4

1/24/2003 BR 19

FUNCTION MemRead (MemoryName : Byte_Memory;
Address : Std_Ulogic_Vector)

RETURN Std_Ulogic_Vector IS

BEGIN

IF (Is_X(Address)) THEN

RETURN (MemoryName(MemoryName'left)'range => 'X');

ELSE

RETURN (MemoryName(To_Integer(Address)));

END IF;

END MemRead;

An Example function from memory package

Type conversion to
integer type since index
is of type NATURAL

What to do if address
contains an ‘X’?

1/24/2003 BR 20

An Example procedure from memory package

PROCEDURE MemWrite (MemoryName : INOUT Byte_Memory;
Address : Std_Ulogic_Vector;

Data : Std_Ulogic_Vector) IS

BEGIN

IF (Is_X(Address)) THEN

NULL;

ELSE

MemoryName(To_Integer(Address)) := Data;

END IF;

END MemWrite;

Assign data to
specified memory
location.

