Multi-Valued Logic

- VHDL allows users to extend the language by defining their own data types
- Early on, users recognized that the BIT data type was insufficient for digital simulation
 - BIT can only have values of '1' or '0'
 - Digital systems require other conditions such as 'Z' (tri-state), 'X' (unknown), weak/strong drivers, etc.
- Companies began writing VHDL models that used proprietary data types that added support for these logic values
 - Each company defined their own data types
 - Models were not interoperable because they used these custom data types

BR

1

6/5/01

- std_logic is known as a resolved data type in VHDL
- A *resolved* data type allows more than one driver for a signal
- Necessary for modeling things like tri-state drivers, pullup/pulldown networks.

Driver Resolution: Example #1						
signal tb : std_logic;						
begin						
'tb' has multiple drivers						
tb <= transport '1' after 3 ns; DRVO						
<pre>pl:process begin tb <= transport `L' after 5 ns; DRV1 wait; end process p1;</pre>						
tb <= transport 'X' after 10 ns; DRV 2 end;						
What does the waveform of signal <i>tb</i> look like?						
6/5/01 BR						

Driver Resolution: Example #3

signal td : std_lo	ogic	:= `Z	, '					
begin								
emulate a pul	lup	resist	:0:	r usi	ng	'H' dri	ίve	9
td <= 'H';	DR	70						
DRV1								
td <= transport	`0'	after	2	ns,	۲Ľ	after	4	ns;
DRV2								
td <= transport	`0'	after	5	ns,	۲Z'	after	7	ns;
DRV3								
td <= transport	`0'	after	6	ns,	۲Z'	after	10) ns
end;								

What does the waveform of signal td look like?

6/5/01

BR

10

Details on 1164

- Look at the *std_logic_1164.vhd* file attached to the class WWW page
- *std_ulogic* is the base type defined in the 1164 standard This is an unresolved type
 - signals of type std_ulogic cannot have multiple drivers
- std_logic is the resolved subtype of std_ulogic
 a resolved type is always a subtype of another unresolved type

type std_ulogic is (`U', `X', `0', `1', `Z', `W','L', `H', `-');

BR

subtype std_logic is resolved std_ulogic;

6/5/01

12

std_logic vs std_ulogic

- *std_logic* is subtype of *std_ulogic*
- Subtypes can be used in place of the type from which it was derived, without needing an explicit conversion function
- *std_ulogic* signals can be assigned to *std_logic* signals, and vice versa
- *std_ulogic_vector* and *std_logic_vector* are the array types
 - for std_ulogic and std_logic respectively
 std_logic vector is not a subtype of std_logic_ulogic and a type conversion function is needed for assignments between signals of these types

BR

13

6/5/01

<i>std_logic</i> vs <i>std_ulogic</i> (cont.)							
 You should us signals that or accidental co driver can be 	se std_ulogic and std_ulogic_vector nly require one driver onnections between signals that should on e detected by the compiler	or for 11y have one					
6/5/01	BR	14					

1164 Resolution Table							
TYPE stdlogic_table IS ARRAY(std_ulogic, std_ulogic) OF CONSTANT resolution_table : stdlogic_table := (std_ulogic;						
U X 0 1 Z W L H -							
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	U X 0 1 2 2 2 2 2 2 2 2 2						
The resolution function uses the lookup table to resolve types.							
6/5/01 BR	15						

