EE 4743 Test \#1 - Spring 2002 Solution
SSN: \qquad (no names please)

For any partial credit, you must show your work.

1. (10 pts) On the diagram below, complete the timing diagram for the Y output for all clock cycles.

2. (15 pts) On the waveforms below, complete the waveforms for State, ld, en, and Q. The FSM is controlling an UP counter .

3. $(20 \mathrm{pts})$ For the figure below:
a. Give the maximum register-to-register delay. Show your work.

Tcq + mult delay + add delay $+t s u=3+18+7+1=29 n s$
b. Modify the diagram to add one level of pipelining but still maintain the same functionality. Add the pipeline stage in the place that will improve the register-to-register delay the most. Compute the new maximum register-to-register. Assume that adding a pipeline registers to any functional unit (adder or multiplier) breaks the combinational delay path in the unit exactly in half.
$T c q+1 / 2$ mult delay + add delay $+t s u=3+9+7+1=19 n s$
c. With the pipeline stage added, complete the 'Q' waveform shown below. Input registers change values as shown, assume Reg Q is loaded every clock cycle. All waveforms represent register outputs.

4. (15 pts) For the figure below:
a. Compute the maximum setup time on pin A

Buff delay $+2($ gate delays $)+T s u-$ clk buff delay $=1.5+2(1.0)+1.5-2.0=3 n s$
b. Compute the minimum hold time on pin A.

Clk buff delay + Thd - min path $A($ buff delay $)=2+1-1.5=1.5 \mathrm{~ns}$

5. (10 pts) Draw the GATE LEVEL logic generated for the VHDL code shown below (A, B, Y are all single-bit signals). Your schematic must be composed of GATES (i.e, nands, nors, ands, ors, xors, etc...).
$\mathrm{Y}<=\mathrm{A}$ when ($\mathrm{S}=$ ' 1 ') else B ;

6. (10 pts) We looked a couple of SRAM based FPGAs from Xilinx and Altera. What was the basic mechanism for implementing a combinational logic function? Give one other feature/function that was included in both of the basic cells from Xilinx and Altera.

Both Xilinx and Altera use 4-input Look Up tables (LUTs). Both basic cells had a DFFs, also had fast carry logic.
7. (10 pts) Name two functions of a PLL (Phase Locked Loop)

Internal/External Clock synchronization (eliminates skew from I/O buffer delay) Clock multiplication

