
1

BR 8/99

A D-Latch in VHDL
entity mydlatch is port (

signal d, g: in std_logic;
signal q: out std_logic

);
end mydlatch;
architecture behavior of mydlatch is
-- rising edge triggered DFF

state: process (g, d)
if (g = ‘1’) then

q < = d;

end if;

end process;
end behavior;

No default
assignment for
‘q’; only assigned
when gate is high.

D
Q

G

Both d, g on sensitivity
list (when g=1, want
changes on D to affect
output)

BR 8/99

A Dff in VHDL
entity mydff is port (

signal d, clk: in std_logic;
signal q: out std_logic

);
end mydff;
architecture behavior of mydff is
-- rising edge triggered DFF

state: process (clk)
if (clk’event and clk = ‘1’) then

q < = d;

end if;

end process;
end behavior;

Rising edge

Assignment
‘protected’ by
clock edge. So
DFF is
synthesized.

D
Q

C

Input d is not on
sensitivity list because ‘q’
only changes when ‘clk’
changes.

BR 8/99

Another way to do a Dff in VHDL
entity mydff is port (

signal d, clk: in std_logic;
signal q: out std_logic

);
end mydff;
architecture behavior of mydff is
-- rising edge triggered DFF

state: process
wait until (clk’event and clk = ‘1’);
q < = d;

end process;
end behavior;

Wait for Rising
edge

Assignment after
rising edge clock
so DFF is
synthesized.

D
Q

C

No sensitivity list

BR 8/99

Comments on Examples
• Process with a clock in sensitivity list or a ‘wait’

on a clock edge is called a ‘clocked process’.
• ALL assignments that are protected by a clock

edge will have a DFFs placed on the logic outputs.
• Can very easily insert DFFs between blocks of

logic in VHDL.

BR 8/99

An example

D
Q

C

D
Q

C

D
Q

C

D
Q

C

A

B

C

D

D
Q

C

D
Q

C

D
Q

C

A_1

B_1

C_1

D_1

ABC_1

D_2

Y

BR 8/99

Entity Declaration

library ieee;
use ieee.std_logic_1164.all;

entity plogic is
port (signal a,b,c,d: in std_logic;

signal clk: in std_logic;
signal y: out std_logic

);
end plogic;

2

BR 8/99

Architecturearchitecture a of plogic is
signal a_1, b_1, c_1 :std_logic;
signal d_1,d_2, abc_1: std_logic;

begin
s1: process

begin
wait until clk'event and clk='1';
a_1 <= a; b_1 <= b; c_1 <= c; d_1 <= d;

end process s1;

s2: process
begin

wait until (clk'event and clk = '1');
abc_1 <= a_1 and b_1 and c_1;
d_2 <= d_1;

end process s2;

s3: process
begin

wait until (clk'event and clk = '1');
y <= abc_1 or d_2;

end process s3;
end a;

Each process defines
a block of logic plus
DFFs.

Could have used ‘if’
statements with clk in
sensitivity list as
well.

Logic in process can
be as complex as you
wish.

BR 8/99

Processes S1, S2, S3

D
Q

C

D
Q

C

D
Q

C

D
Q

C

A

B

C

D

D
Q

C

D
Q

C

D
Q

C

A_1

B_1

C_1

D_1

ABC_1

D_2

Y

Process S1
Process S2 Process S3

BR 8/99

A Problem with VHDL Semantics vs
Maxplus Synthesis…...

architecture behavior of pipetest is
signal a_1, a_2, a_3: std_logic;

begin
process

begin
wait until clk'event and clk='1';
a_1 <= a;
a_2 <= a_1; -- what happens??
a_3 <= a_2;
y <= a_3;

end process;
end behavior;

What logic
should be
synthesized for
this architecture?

BR 8/99

VHDL Definition of Signal Update
VHDL defines that SIGNAL UPDATE within a PROCESS
takes place after the process is EXITED. This means that
that the logic synthesized should act like the following:

D
Q

C

A
D

Q
C

D
Q

C

A_1 A_2
D

Q
C

A_3 Y

On the clock edge, signal A_1 is updated with A. However,
according to VHDL semantics, the signal does not change its
value until process EXIT. This means that A_2 will get the old
value of A_1, as is shown above.

BR 8/99

A Problem In Maxplus Synthesis
The Synopsys and Synplicity synthesis tools do synthesize to 4
Dffs; this is correct. Unfortunately, Altera Maxplus synthesizes
to just:

D
Q

C

A
Y

This is incorrect, but at the same time, the signal updating
rules that VHDL uses can be confusing. The code looks
like it should produce the above logic!!!

This problem has been
corrected in Versions 9.3
and later!!!!!

BR 8/99

What to do????
• If you really want 4 FFs in a chain, then use four separate

processes, with wait statements in each process. This way,
your intentions will be clear and Maxplus will produce the
correct logic

• If you need temporary placeholders for intermediate
results, then use VARIABLES.
– Variables can only be declared within processes
– Variable update semantics act like variable update in normal

programming languages. Variables are updated IMMEDIATELY.
– Variable assignment uses the ‘ := ‘ operator. Signal assignment

uses ‘ <= ‘ .

3

BR 8/99

VHDL Variables
architecture behavior of pipetest is
begin
process

variable a_1, a_2, a_3: std_logic;
begin

wait until clk'event and clk='1';
a_1 := a;
a_2 := a_1; -- what happens??
a_3 := a_2;
y <= a_3;

end process;

end behavior;

Variable declaration

Variable assignment

Synthesizes correctly to :

D
Q

C

A
Y

BR 8/99

Variables vs. Signals
• ALWAYS use variables for temporary values

within processes
– However, for the RTL done in this class I doubt if you

will ever need to use variables.
• Use SIGNALS for passing information between

processes
– Variables cannot be used outside of processes
– A variable ‘x’ in a process cannot be accessed by other

processes. Can only be used within the process it is
declared.

BR 8/99

Registers
The most common sequential building block is the register. A
register is N bits wide, and has a load line for loading in a new
value into the register.

DIN

N
CLK

LD

R
E
G

DOUT

N

Register contents do not change
unless LD = 1 on active edge of
clock.

A DFF is NOT a register! DFF
contents change every clock
edge.

ACLR used to asynchronously
clear the register

ACLR

BR 8/99

VHDL for 8-bit Register (Entity)

library ieee;
use ieee.std_logic_1164.all;

-- 8 bit register
entity reg8 is

port (clk: in std_logic;
reset: in std_logic; -- async reset
ld: in std_logic; -- synchronous load
din: in std_logic_vector(7 downto 0);

-- outputs
dout: out std_logic_vector(7 downto 0)

);
end reg8;

BR 8/99

VHDL for 8-bit Register (Architecture)

architecture a of reg8 is
begin

main:process(clk, reset)
begin
if (reset = '1') then

dout <= "00000000";
elsif (clk'event and clk='1') then

-- rising edge of clock
if (ld = '1') then
dout <= din;

end if;
end if;

end process main;
end a;

Asynchronous Reset

Change register state
on rising edge and
assertion of load line.

