
1

BR 1/99 1

Digital System Design
• At this point, we are trying to do complex

datapaths + complex control
• Faced with problems of :

– Constraints - minimum clock frequency, maximum
number of clock cycles, target device, resource limits
(don’t have an infinite number of logic cells available)

– Execution unit architecture and number : fast
adder? Slow adder? Pipelined or non-pipelined
multiplier? SRAM versus registers? How many do I
need based on constraints?

– Scheduling : what happens during what clock cycle?

BR 1/99 2

Constraints
• Two Constraints that can be placed on a digital

system design are clock period and clock cycle
constraints

• A Clock period constraint will define the minimum
clock frequency.
– Will affect the architecture of your execution units (fast

adder versus slow adder, pipelined execution unit versus
non-pipelined execution unit)

• A clock cycle constraint limits the available number
of clock cycles to perform operation

• Total computation time: clock period * clock cycles
• Other constraints: Power, device type, Input/Output

BR 1/99 3

Resource Estimation
• Given constraints, would like a lower bound

estimate on the number of resources needed
• Resource types: Registers, Execution units

(adders, multipliers, etc)
• Lets do resource estimation for the equation

below:

Y = a0 * x + a1 *x@1 + a2 * x@2 + a3 * x@3

FIR
Computation

X Y

BR 1/99 4

FIR Filter
Y = a0 * x + a1 *x@1 + a2 * x@2 + a3 * x@3

The equation above is an equation for a 4-Tap Finite Impulse
Response digital filter.

Each sample period a new value for X is input to the system. A
sample period is measured in clock cycles, and the number of
clock cycles per sample period will be an external constraint.

X is the value for current sample period.
X@1 is the value for one sample period back.
X@2 is the value for two sample periods back.
X@3 is the value for three sample periods back.

A0, a1,a2,a3 are the filter coefficients. Changing these
coefficients change the filter function; assumed to be
preloaded.

BR 1/99 5

Dataflow Graph
We need a method of visualizing the data dependencies and
operations to be performed. One method of doing this is the
dataflow graph.

X

*

a0

*

X@1 a1

*

X@2 a2

*

X@3 a3

+ +
+

Y

BR 1/99 6

Operations in a Dataflow graph

X
An input operation. Inputs are assumed
registered. An input operation will take 1
clock cycle.

Y

An output operation. Outputs are not assumed to be
registered because they will be registered by the
datapath they are being passed to! As such, they
don’t cost a clock cycle (its cycle cost is in the next
datapath).

+

An execution unit operation. Based on clock
period constraints, execution units can be
chained (a multiplier output directly feeding an
adder input without an intervening register) or
non-chained (all inputs/outputs of execution
units are registered).

2

BR 1/99 7

What is minimum number of clock cycles needed?
Assume that clock period constraint does not allow execution unit
chaining (registers are between execution units). Minimum # of
clock cycles will be longest path through the datapath.

X

*

a0

*

X@1 a1

*

X@2 a2

*

X@3 a3

+ +
+

Y

Longest
path is 4
clock
cycles.

Minimum
sample
period is 4
clocks.

N1

N2 N3 N4 N5

N6
N7

N8

BR 1/99 8

Resource Estimation
Given a clock cycle constraint (sample period), can estimate
minimum number of needed resources.

Assume the minimum sample period of 4 clocks.

Minimum resource estimation is:

operations/ # of clocks

Minimum Resource estimation:
multipliers = # multiplies/ # clocks = 4/4 = 1

adders = # additions/ #clocks = 3 /4 = 1

Minimum resource estimation is 1 multiplier, 1 adder.
Register estimation is tougher. Need to store X@1, X@2,
X@3 + four coefficents. Need at least 7 registers.

BR 1/99 9

Scheduling
Scheduling is mapping operations onto execution units.
Use a scheduling table which lists clock cycles versus
resources. Lets first just worry about execution units, and
not about registers for now.

Resource: Adder Multiplier IO

Cycle
Start

#1 idle Reg??←x@3*a3 (N5) Input X

#2 idle Reg??←x@2*a2 (N4)

#3 N7 op (N5+N4) Reg?? ←x@1*a1 (N3)

#4 idle Reg?? ←x*a0 (N2)
BR 1/99 10

Scheduling Failed!
The scheduling failed! We were not able to schedule the adder
operations represented by nodes N6 and N8.

The minimum resource estimation is a lower bound; may not
find a schedule to fit it.

If scheduling fails, the two options:
a. Increase resources, keep same # of clocks
b. Increase # of clocks, keep same number of resources

We want a minimum sample period, so do option #a.

The bottleneck is the multiplier. Lets add another multiplier.

BR 1/99 11

Scheduling (2nd try)

Resource: Adder Mult A Mult B IO

Cycle
Start

#1 idle x@3*a3 (N5) x@2*a2 (N4) Input X

#2 N7 op (N5+N4) x@1*a1 (N3) x*a0 (N2)

#3 N6 op (N3+N2) idle idle

#4 N8 op (N7+N6) idle idle

Scheduling succeeds.

BR 1/99 12

Register Allocation

At this point, need to allocate registers to save temporary
results. At beginning of operation, we know that we need to
have the values a0,a1,a2,a3, x@3,x@2,x@1 stored. So we
need at least 7 registers.

The registers holding a0-a3 will not change value during the
computation, so we will not consider them in our
scheduling.

Assume at Start: RA = x@3, RB=x@2, RC=x@1.

3

BR 1/99 13

Register Scheduling (Clock #1)

Regs: RA = x@3, RB=x@2, RC=x@1.

Clock 1:
Input X??? Where to put this? For now, use new register RegD.
Input X: RD ← X
x@3*a3 (N5): RA ← RA * a3 (don’t need x@3 after this, destroy RA)
x@2*a2 (N4) ??? ← RB * a2 (will need x@2 next time, can’t destroy RB!)

Add another register.

x@2*a2 (N4) RE ← RB * a2 (will need x@2 next time, can’t destroy RB!)

Scheduling this operations forced us to add two additional registers (RD, RE).

Now do Clock #2

BR 1/99 14

Register Scheduling (Clock #2)

Clock 2:
N4 + N5 (N7): RA ← RE + RA (destroy RA, don’t need N5 anymore)
x@1*a1 (N3): ?? ← RC * a1 (will need x@1 next time, can’t destroy RC!!)
Look for a free register. Don’t need RE (N4) after this clock cycle, use it.
x@1*a1 (N3): RE ← RC * a1 (store result in RE).
x*a0 (N2): ??? ← RD * a0 (will need “x” next time, can’t destroy RD!)

Any free registers? NO. Add another register.

x*a0 (N2): RF ← RD * a0

Scheduling these operations forced us to add one more register (RF).

Now do Clock #3

Regs: RA = N5, RB=x@2, RC=x@1, RD=x, RE=N4

BR 1/99 15

Register Scheduling (Clock #3, Clock #4)

Clock 3:
N6 op (N3+N2) RE ← RE + RF (destroy RE, don’t need N3 anymore)

Regs: RA = N7, RB=x@2, RC=x@1, RD=x, RE=N3, RF=N2

Regs: RA = N7, RB=x@2, RC=x@1, RD=x, RE=N6, RF=N2

Clock 4:
N8 op (N7+N6) Yout ← RA + RE (output is unregistered)

What about initial conditions for next sample period? RA = x@3, RB=x@2, RC=x@1
??

x@1 ← x RC ← RD Note that X in this sample period becomes X@1
x@2 ← x@1 RB ← RC for the next sample period, x@1 becomes x@2,
x@3 ← x@2 RA ← RB etc...

BR 1/99 16

Final Requirements

• For sample period = 4 clocks:
– 2 Multipliers, 1 adder
– 10 registers (RA-RF, plus 4 registers for a0,a1,a2,a3)

• Is this the best hardware allocation?
– Maybe not, if we try harder may be able to remove a

register or two.

• Lets go with this and try to build the datapath

BR 1/99 17

Datapath Execution Unit sources, destinations

Mult A: Left sources: RA, RC Right sources: a3, a1
Mult B: Left sources: RB, RD Right sources: a2, a0
Adder: Left sources: RE, RA Right sources: RA, RF,
RE

RA src: MultA, Adder, RB
RB src: RC
RC src: RD
RD src: X
RE src: Adder, Mult A, Mult B
RF src: Multiplier B

a0-a3 registers loaded from external databus X .

BR 1/99 18

Datapath

RARDA0-A3

X

Mult A

RB

ma add

RC RE

rd
ma add mb

RF

mb

a3 a1

ma

Mult B

a2 a0

mb

adder

add

Y

4

BR 1/99 19

Comments
• Saving on Execution units leads to lots of wiring

and muxes because of the amount of execution
unit sharing that is required

• Could probably have reduced some of the mux
requirements by more careful assignment of
temporary values to registers

• This datapath would require a FSM with four
states; each state corresponding to a clock cycle.
– Output of FSM would be mux select lines, register

load lines
– May need extra states if handshaking control

(input_rdy, output_rdy) is required.

BR 1/99 20

Increasing number of available clocks
Lets increase sample period from 4 to 5, and see if we can get
rid of multiplier.
Resource: Adder Multiplier IO

Cycle
Start

#1 idle Reg??←x@3*a3 (N5) Input X

#2 idle Reg??←x@2*a2 (N4)

#3 N7 op (N5+N4) Reg?? ←x@1*a1 (N3)

#4 idle Reg?? ←x*a0 (N2)

#5 N6 op (N2 + N3) idle

BR 1/99 21

Scheduling Still Failed
Did not schedule Node 8 (N8). There should be a way in
which we can make better use of the adder. Try
restructuring the flowgraph.

X

*

a0

*

X@1 a1
*

X@2 a2

*

X@3 a3

+
+

+

Y

Longest
path is
still 4
clock
cycles.

A flowgraph
transformation
rearranges the
structure of the
flowgraph.

N2 N3

N4 N5

N6

N7

N8

BR 1/99 22

Try again with Sample Period = 5
Resource: Adder Multiplier IO

Cycle
Start

#1 idle Reg??←x@3*a3 (N5) Input X

#2 idle Reg??←x@2*a2 (N4)

#3 N7 op (N5+N4) Reg?? ←x@1*a1 (N3)

#4 N6 op (N3+N7) Reg?? ←x*a0 (N2)

#5 N8 op (N2 + N6) idle

Scheduling succeeds with new flowgraph!!!!!!

BR 1/99 23

Flowgraph for Matrix Multiply

T00 T01 T02 T03
T10 T11 T12 T13
T20 T21 T22 T23
T30 T31 T32 T33

X
Y
Z
W

X’ = X*T00 + Y*T01 + Z*T02 + W*T03
Y’ = X*T10 + Y*T11 + Z*T12 + W*T13
Z’ = X*T20 + Y*T21 + Z*T22 + W*T23
W’ = X*T30 + Y*T31 + Z*T32 + W*T33

IO Constraint: Single input bus, single output bus

BR 1/99 24

Flowgraph for Matrix Multiply (cont)

X Y Z W

*

T00

*
T10

*

T20

*

T30

*

T01

*
T11

*

T21

*

T31

*

T02

*
T12

*

T22

*

T32

*

T03

*
T13

*

T23

*

T33

+
+

+ X’

+
+

+ Y’

+
+

+ Z’

+
+

+ W’

5

BR 1/99 25

Comments on MM Flowgraph

• The main thing to notice about the graph is that
you don’t have to wait until you have X,Y,Z,W
before you begin operations
– Once you have X, you can do four multiply

operations

• Another thing to note is the symmetry and
parallelism available
– You could have four parallel datapaths, each one

containing a multiplier and an adder, and produce
X’, Y’, Z’, W’ from these four datapaths

BR 1/99 26

Parallel Datapaths for MM

X Y Z W

*
+

*
+

*
+

*
+

X’

Y’

Z’

W’

Datapaths

BR 1/99 27

On Latency, Initiation Rate

Initiation Rate: Rate at which new values are input

Latency: Number of clocks from input value to
COMPLETED output value

For the project, initiation rate will be number of
clocks from inputting X for one set of (X,Y,W,Z) to
inputting the next X for a new set of (X,Y,W,Z)

BR 1/99 28

Defining Initiation Rate, Latency
Input X0
Input Y0 (compute)
Input Z0 (compute)
Input W0 (compute)
compute
compute
compute
compute
Output X0’
Output Y0’
Output W0’
Output Z0’
Input X1
Input Y1..

Initiation Rate = 12

Latency = 12

BR 1/99 29

Input X0
Input Y0 (compute)
Input Z0 (compute)
Input W0 (compute)
compute
compute
compute
compute
Output X0’
Output Y0’
Output W0’
Output Z0’

Input X1
Input Y1 (compute)
Input Z1(compute)
Input W1 (compute)
compute
compute
compute
compute
Output X1’
Output Y1’
Output W1’
Output Z1’

Input X2
Input Y2 (compute)
Input Z2(compute)
Input W2 (compute)

….. Etc...

Overlapping
computation of
two matrix
multiplies to
increase
initiation rate.

This is a form of
pipelining!!!

Init Rate=8

Latency=12

Pipelining: more than one
computation in progress.

BR 1/99 30

Input X0
Input Y0 (compute)
Input Z0 (compute)
Input W0 (compute)
compute
compute
compute
compute
Output X0’
Output Y0’
Output W0’
Output Z0’

Input X1
Input Y1 (compute)
Input Z1(compute)
Input W1 (compute)
compute
compute
compute
compute
Output X1’
Output Y1’
Output W1’
Output Z1’

Init Rate=4

Latency=12

Input X2
Input Y2 (compute)
Input Z2(compute)
Input W2 (compute)
compute
compute
compute
compute
Output X2’
Output Y2’
Output W2’
Output Z2’

Note that for this overlap
case the input bus is
constantly busy, and the
output bus is constantly
busy.

Input X3
Input Y3 (compute)
Input Z3(compute)
Input W3 (compute)
compute
compute
compute
compute
etc….

