Digital System Design

- At this point, we are trying to do complex datapaths + complex control
- Faced with problems of :
- Constraints - minimum clock frequency, maximum number of clock cycles, target device, resource limits (don't have an infinite number of logic cells available)
- Execution unit architecture and number : fast adder? Slow adder? Pipelined or non-pipelined multiplier? SRAM versus registers? How many do I need based on constraints?
- Scheduling : what happens during what clock cycle?

Resource Estimation

- Given constraints, would like a lower bound estimate on the number of resources needed
- Resource types: Registers, Execution units (adders, multipliers, etc)
- Lets do resource estimation for the equation below:

Dataflow Graph

We need a method of visualizing the data dependencies and operations to be performed. One method of doing this is the dataflow graph.

Constraints

- Two Constraints that can be placed on a digital system design are clock period and clock cycle constraints
- A Clock period constraint will define the minimum clock frequency.
- Will affect the architecture of your execution units (fast adder versus slow adder, pipelined execution unit versus non-pipelined execution unit)
- A clock cycle constraint limits the available number of clock cycles to perform operation
- Total computation time: clock period * clock cycles
- Other constraints: Power, device type, Input/Output

$$
\begin{gathered}
\text { FIR Filter } \\
\mathbf{Y}=\mathbf{a} 0 * \mathbf{x}+\mathrm{a} 1 * \mathbf{x} @ 1+\mathrm{a} 2 * \mathbf{x} @ 2+\mathrm{a} 3 * \mathbf{x} @ 3
\end{gathered}
$$

The equation above is an equation for a 4-Tap Finite Impulse Response digital filter.
Each sample period a new value for X is input to the system. A sample period is measured in clock cycles, and the number of clock cycles per sample period will be an external constraint.
X is the value for current sample period.
$X @ 1$ is the value for one sample period back.
$\mathbf{X} @ 2$ is the value for two sample periods back.
$\mathbf{X} @ 3$ is the value for three sample periods back.
A0, a1, $\mathbf{a}, \mathrm{a} 3$ are the filter coefficients. Changing these coefficients change the filter function; assumed to be preloaded.

Operations in a Dataflow graph
An input operation. Inputs are assumed registered. An input operation will take 1 clock cycle.

An output operation. Outputs are not assumed to be registered because they will be registered by the datapath they are being passed to! As such, they don't cost a clock cycle (its cycle cost is in the next datapath).

An execution unit operation. Based on clock period constraints, execution units can be chained (a multiplier output directly feeding an adder input without an intervening register) or non-chained (all inputs/outputs of execution units are registered).

What is minimum number of clock cycles needed?

Assume that clock period constraint does not allow execution unit chaining (registers are between execution units). Minimum \# of clock cycles will be longest path through the datapath.

Resource Estimation

Given a clock cycle constraint (sample period), can estimate minimum number of needed resources.
Assume the minimum sample period of 4 clocks.
Minimum resource estimation is:
\# operations/ \# of clocks
Minimum Resource estimation:
\# multipliers $=$ \# multiplies/ \# clocks $=4 / 4=1$
\# adders = \# additions/ \#clocks = $3 / 4=1$
Minimum resource estimation is 1 multiplier, 1 adder.
Register estimation is tougher. Need to store $\mathbf{X} @ 1, \mathbf{X} @ 2$, $\mathbf{X} @ 3+$ four coefficents. Need at least 7 registers.

Scheduling

Scheduling is mapping operations onto execution units. Use a scheduling table which lists clock cycles versus resources. Lets first just worry about execution units, and not about registers for now.

Resource: Cycle Start	Adder	Multiplier	10
\#1	idle	Reg?? $\leftarrow \mathrm{x} @ 3$ 3*a3 (N5)	Input X
\#2	idle	Reg?? $\leftarrow \mathbf{x @ 2 * a 2 ~ (N 4) ~}$	
\#3	N7 op (${ }^{\text {5 }}$ +N4)	Reg?? ↔x@1*a1 (N3)	
\#4	idle	Reg?? $\leftarrow \mathrm{x}^{*} \mathbf{a} 0$ (N 2)	9

Scheduling (2nd try)				
Resource: Cycle Start	Adder	Mult A	Mult B	IO
$\# 1$	idle	$\mathbf{x @ 3 * a 3}$ (N5)	$\mathbf{x @ 2 * a 2 ~ (N 4) ~}$	Input X
\#2	N7 op (N5+N4)	$\mathbf{x @ 1 * a 1 ~ (N 3) ~}$	$\mathbf{x * a 0 ~ (N 2) ~}$	
\#3	N6 op (N3+N2)	idle	idle	
$\# 4$	N8 op (N7+N6)	idle	idle	

Scheduling succeeds.

Scheduling Failed!

The scheduling failed! We were not able to schedule the adder operations represented by nodes N6 and N8.

The minimum resource estimation is a lower bound; may not find a schedule to fit it.

If scheduling fails, the two options:
a. Increase resources, keep same \# of clocks
b. Increase \# of clocks, keep same number of resources

We want a minimum sample period, so do option \#a.
The bottleneck is the multiplier. Lets add another multiplier.

Register Allocation

At this point, need to allocate registers to save temporary results. At beginning of operation, we know that we need to have the values a0, a1, $\mathbf{a 2 , a 3 ,} \mathbf{x} @ 3, \mathbf{x} @ 2, \mathbf{x} @ 1$ stored. So we need at least 7 registers.

The registers holding a0-a3 will not change value during the computation, so we will not consider them in our scheduling.

Assume at Start: RA=x@3, RB=x@2, RC=x@1.

Register Scheduling (Clock \#1)

Regs: $\mathbf{R A}=\mathbf{x} @ 3, R B=\mathbf{x} @ 2, R C=x @ 1$.

Clock 1:

Input X??? Where to put this? For now, use new register RegD.
Input $\mathrm{X}: \quad \mathrm{RD} \leftarrow \mathrm{X}$
 $\mathbf{x @ 2 * a 2}$ (N4) \quad ??? $\leftarrow R B * a 2$ (will need $\mathbf{x @ 2}$ next time, can’t destroy RB!)
Add another register.
$\mathbf{x @ 2 * a 2 (N 4)} \quad \mathrm{RE} \leftarrow R B * a 2$ (will need $\mathbf{x} @ 2$ next time, can’t destroy RB!)

Scheduling this operations forced us to add two additional registers (RD, RE).
Now do Clock \#2

Register Scheduling (Clock \#3, Clock \#4)

Regs: $\mathbf{R A}=\mathbf{N} 7, R B=\mathbf{x} @ 2, R C=\mathbf{x} @ 1, R D=x, R E=N 3, R F=N 2$
Clock 3:
N6 op (N3+N2) $\quad R E \leftarrow R E+R F \quad$ (destroy RE, don't need N3 anymore)

Regs: $\mathbf{R A}=\mathbf{N} 7, \mathbf{R B}=\mathbf{x} @ 2, R C=\mathbf{x} @ 1, R D=\mathbf{x}, \mathbf{R E}=\mathbf{N} 6, R F=\mathbf{N} 2$

Clock 4:

N8 op (N7+N6) Yout $\leftarrow \mathbf{R A}+\mathbf{R E} \quad$ (output is unregistered)
What about initial conditions for next sample period? $\mathrm{RA}=\mathrm{x} @ 3, \mathrm{RB}=\mathbf{x} @ 2, \mathrm{RC}=\mathbf{x} @ 1$??

$\mathbf{x} @ 1 \leftarrow \mathbf{x}$	$\mathbf{R C} \leftarrow \mathrm{RD}$	Note that X in this sample period becomes $\mathrm{X} @ 1$ $\mathbf{x} @ 2 \leftarrow \mathbf{x} @ 1$
$\mathrm{RB} \leftarrow \mathrm{RC}$	for the next sample period, $\mathbf{x} @ 1$ becomes $\mathbf{x} @ 2$,	

$\mathbf{x} @ 3 \leftarrow \mathbf{x} @ 2 \quad$ RA $\leftarrow R B \quad$ etc...
BR 1/99

Register Scheduling (Clock \#2)

Regs: $R A=\mathbf{N} 5, R B=\mathbf{x} @ 2, R C=x @ 1, R D=x, R E=N 4$

Clock 2:

N4 + N5 (N7): \quad RA \leftarrow RE + RA (destroy RA, don't need N5 anymore)
 Look for a free register. Don't need RE (N4) after this clock cycle, use it.
$\mathbf{x} @ 1 * a 1$ (N3): $\quad \mathrm{RE} \leftarrow \mathrm{RC}$ * a1 (store result in RE).
x^{*} a0 (N2): $\quad ? ?$? $\leftarrow \mathbf{R D}^{*}$ a0 (will need "x" next time, can't destroy RD!)
Any free registers? NO. Add another register.
$\mathbf{x}^{*} \mathrm{a} 0$ (N 2): $\quad \mathrm{RF} \leftarrow$ RD * a0

Scheduling these operations forced us to add one more register (RF).
Now do Clock \#3

Final Requirements

- For sample period $=4$ clocks:
- 2 Multipliers, 1 adder
- 10 registers (RA-RF, plus 4 registers for $\mathbf{a 0}, \mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3$)
- Is this the best hardware allocation?
- Maybe not, if we try harder may be able to remove a register or two.
- Lets go with this and try to build the datapath

Datapath Execution Unit sources, destinations

```
Mult A: Left sources: RA, RC Right sources: a3, a1
Mult B: Left sources: RB, RD Right sources: a2, a0
Adder: Left sources: RE, RA Right sources: RA, RF,
RE
RA src: MultA, Adder, RB
RB src: RC
RC src: RD
RD sre: X
RE src: Adder, Mult A, Mult B
RF src: Multiplier B
a0-a3 registers loaded from external databus X .
```

Datapath

Comments

- Saving on Execution units leads to lots of wiring and muxes because of the amount of execution unit sharing that is required
- Could probably have reduced some of the mux requirements by more careful assignment of temporary values to registers
- This datapath would require a FSM with four states; each state corresponding to a clock cycle.
- Output of FSM would be mux select lines, register load lines
- May need extra states if handshaking control (input_rdy, output_rdy) is required.

Scheduling Still Failed

Did not schedule Node 8 (N8). There should be a way in which we can make better use of the adder. Try restructuring the flowgraph.

Increasing number of available clocks
Lets increase sample period from 4 to 5 , and see if we can get rid of multiplier.

Resource: Cycle Start	Adder	Multiplier	10
\#1	idle	Reg?? $\leftarrow \mathrm{x} @ 3$ 3*33 (N5)	Input X
\#2	idle	Reg? ? $\leftarrow \mathbf{x}$ @ $2 *$ a2 (N4)	
\#3	N7 op ($\mathrm{N} 5+\mathrm{N} 4)$	Reg?? $\leftarrow \mathbf{x}$ @1*a1 (N3)	
\#4	idle	Reg?? $\leftarrow \mathrm{x}^{*} \mathrm{a} 0$ (N 2)	
\#5	N6 op (N2 + N3)		20

Try again with Sample Period $=5$			
Resource: Cycle Start	Adder	Multiplier	10
\#1	idle	Reg?? $\leftarrow \mathrm{x} @ 3$ 3*33 (N5)	Input X
\#2	idle	Reg?? $\leftarrow \mathrm{x} @ 2 \times \mathrm{a} 2$ (N4)	
\#3	N7 op ($\mathrm{N} 5+\mathrm{N} 4)$	Reg? ? $\leftarrow \mathbf{x} @ 1 * \mathrm{a} 1$ (N3)	
\#4	N6 op ($\mathrm{N} 3+\mathrm{N} 7$)	Reg? ? $\leftarrow \mathrm{x}^{*} \mathrm{a} 0$ (N 2$)$	
	N8 op ($\mathrm{N} 2+\mathrm{N} 6)$		
Scheduling succeeds with new flowgraph!!!!!!			
BR 1/99			22

Flowgraph for Matrix Multiply (cont)

Comments on MM Flowgraph

- The main thing to notice about the graph is that you don't have to wait until you have X, Y, Z, W before you begin operations
- Once you have X, you can do four multiply operations
- Another thing to note is the symmetry and parallelism available
- You could have four parallel datapaths, each one containing a multiplier and an adder, and produce $X^{\prime}, Y^{\prime}, Z^{\prime}, W^{\prime}$ from these four datapaths

Parallel Datapaths for MM

BR 1/99

Input X0 Init Rate=8		Overlapping
Input Y0 (compute)		computation of
Input Z0 (compute)	Latency=12	
Input W0 (compute)		two matrix
compute		multiplies to
compute		increase
compute		initiation rate.
compute		
Output X0' Input X1		
Output Y0' Input Y1 (compute)		
Output W0' Input Z1(compute)		pipelining!!!
Output Z0, Input W1 (compute)	\downarrow	
compute	Pipelinin	more than one
compute		
compute	computat	in progress.
compute		
Output X1,	Input X2	
Output Y1'	Input Y2 (compute)	
Output W1'	Input Z2(compute)	
Output ZI'	Input W2 (compute)	
	${ }_{\text {R }} \mathrm{i} 1099$ Etc...	29

