
1

BR 1/99 1

Finite State Machines

• The job of a finite state machine is to sequence
operations on a datapath

R
E
G

R
E
G

+
R
E
G

XDIN DOUT

FSM Control (reg load lines, mux selects)

BR 1/99 2

Algorithmic State Chart (ASM)
• An ASM chart can be used to describe FSM

behavior
Only three action signals can appear within an ASM chart:

State box. Each box represents a state.
Outputs within a state box is an
UNCONDITIONAL output (always asserted
in this state).

Decision box. A condition in this box
will decide next state condition.

Conditional output box. If present, will
always follow a decision box; output
within it is conditional.

BR 1/99 3

Example ASM Chart

Zero?

ld_cnt = 1

Addr_sel =1, zero_we = 1,
cnt_en = 1

Cnt_eq?

Clr_Busy = 1
Yes

No

NoYes

S0

S1

S2

Set_Busy = 1

BR 1/99 4

LOW Reg

HIGH Reg

Counter

Compare AEQB

addr

dout

data

we

Addr[5..0]

Din[7..0]
0

Dout[7..0]

2/1 Mux

FSM

Q J

K

Busy

Set_BusyClr_Busy Zero_we

we

Cnt_en, ld_cnt

Addr_sel

Zero
Zero Cnt_eq

Datapath + Control
Ld_high

Ld_low

BR 1/99 5

Comments about ASM Example
• How many states?

– Three states, count the boxes

• How many inputs?
– Two inputs (Zero, Cnt_eq). Count signals within

decision boxes. Inputs ALWAYS appear within
decision boxes.

• How many outputs?
– 4 unconditional outputs (count signals within state

boxes)
– 2 conditional output (count signals within conditional

output boxes
– Outputs ALWAYS appear in either state boxes or

conditional output boxes.
BR 1/99 6

FSM Implementation
Will always use VHDL to implement FSMs in this class.

Most common method is to use ONE process for implementing
state registers, ONE process for implementing logic.

Combinational
Logic
Circuit

D FFs

n m

k k

k-bit
Present State

Value

k-bit
Next State

Value

CLK

2

BR 1/99 7

State Encoding
• How we encode the states is an implementation

decision
• For K states, need a minimum of log2(K) Dffs.
• Minimal encoding for example is two FFs

– S0 = 00, S1 = 01, S2 = 10 (counting order)
– S0 = 00, S1 = 01, S2 = 11, (Gray code for S0->S1->S2)

Gray code usually faster, less logic than counting order

• One Hot encoding, one FF per state
– S0 = 001, S1 = 010, S2 = 100
– For large FSMs (> 16 states), one hot can be faster than

minimal encoding

BR 1/99 8

FSM Entity Declaration, Part of Architecture
library ieee;
use ieee.std_logic_1164.all;

-- FSM entity for RAM Zero example
entity ramfsm is
port (clk, reset: in std_logic;

zero, cnt_eq: in std_logic; -- control inputs
set_busy, clr_busy: out std_logic; -- control outputs
addr_sel, cnt_en, ld_cnt, zero_we: out std_logic;
state: out std_logic_vector(1 downto 0) -- state out for debugging

);

end ramfsm;

architecture a of ramfsm is
signal pstate: std_logic_vector(1 downto 0);
CONSTANT S0 : std_logic_vector(1 downto 0) := "00"; --- state encoding
CONSTANT S1 : std_logic_vector(1 downto 0) := "01";
CONSTANT S2 : std_logic_vector(1 downto 0) := "10";

BR 1/99 9

FSM Architecture, One process (cont)
begin
state <= pstate; -- look at present state for debugging purposes
stateff:process(clk) -- process has state transitions ONLY
begin
if (reset = '1') then pstate <= S0;
elsif (clk'event and clk='1') then -- rising edge of clock

CASE pstate IS
WHEN S0 => if (zero = '1') then pstate <= S1; end if;
WHEN S1 => pstate <= S2;
WHEN S2 => if (cnt_eq = '1') then pstate <= S0 ; end if;
WHEN others => pstate <= S0;

end case;
end if;

end process stateff;

set_busy <= '1' when (pstate = S0 and zero = ‘1’) else '0';
ld_cnt <= '1' when (pstate = S1) else '0';
addr_sel <= '1' when (pstate = S2) else '0';
zero_we <= '1' when (pstate = S2) else '0';
cnt_en <= '1' when (pstate = S2) else '0';
clr_busy <= '1' when (pstate = S2 and cnt_eq = '1') else '0';

end a; BR 1/99 10

Comments on One Process Implementation
• Stateff process defines state FFs and transistions

between states
• Outputs of FSM are separate concurrent statements

outside of process
• Can be confusing since you separate out the FSM

outputs from their state definitions within the
CASE statement

• If output code is placed within CASE statement
then they would be protected by the clock check
and thus would have DFFs placed on their outputs
– 1 clock cycle of latency to output assertion

BR 1/99 11

FSM Architecture, Two processes
architecture a of ramfsm is

signal pstate, nstate: std_logic_vector(1 downto 0);

CONSTANT S0 : std_logic_vector(1 downto 0) := "00"; --- state encoding
CONSTANT S1 : std_logic_vector(1 downto 0) := "01";
CONSTANT S2 : std_logic_vector(1 downto 0) := "10";

begin
state <= pstate; -- look at present state for debugging purposes

stateff:process(clk) -- process has DFFs only
begin
if (reset = '1') then pstate <= S0;
elsif (clk'event and clk='1') then

pstate <= nstate; -- updated present state with next state
endif;

end process stateff;
BR 1/99 12

FSM Architecture, Two processes (cont)
comblogic: process (zero, cnt_eq, pstate)

begin
-- default assignments
nstate <= pstate;
set_busy <= '0'; clr_busy <= '0';
ld_cnt <= '0';
addr_sel <= '0';
zero_we <= '0';
cnt_en <= '0';
CASE pstate IS

WHEN S0 => if (zero = '1') then
set_busy <= ‘1’; nstate <= S1;
end if;

WHEN S1 => ld_cnt <= ’1'; nstate <= S2;
WHEN S2 => zero_we <= '1' ; cnt_en <= '1' ; addr_sel <= '1’;

if (cnt_eq = '1') then
clr_busy <= '1’; nstate <= S0 ;

end if;
WHEN others => nstate <= S0;

end case;
end if;

end process comblogic;
end a;

3

BR 1/99 13

Comments on Two Process Implementation
• Stateff process defines only FFs
• Comblogic process defines

– State transitions
– Output assertions
– Has natural mapping from ASM chart to CASE

statement

• Default assignments to outputs in Comblogic
process very important
– A combinational process; do not want latches

synthesized on outputs
– The assignment “pstate <= nstate” says to not change

state unless directed to from within CASE statement.
BR 1/99 14

FSM Timing: Start Zero Operation
CLK

Pstate

Nstate

S0

S0 S1

S1

S2

Zero (ext. Input)

S2

Set_busy

Ld_cnt

Zero_we, cnt_en, addr_sel

Busy (external output)

BR 1/99 15

Comments

• Note that Pstate changes on active clock edge
• Conditional outputs will change based on present

state AND external inputs
• Unconditional outputs change on clock edge and

remain true as long as in the current state
• In order for BUSY to go high in State S1,

‘set_busy’ must be asserted in S0 since BUSY
comes from JK FF.

BR 1/99 16

FSM Timing: Finish Zero Operation
CLK

Pstate

Nstate

S2

S2 S0

S0

Cnt_Eq (from Comparator)

Clr_busy

Zero_we, cnt_en, addr_sel

Busy (external output)

Counter

High-2 High+1High-1 High

BR 1/99 17

Comments

• Note that for BUSY to go low in S0, then
“clr_busy” had to be asserted in State S2.

• Note that the ‘cnt_en’ signal stays true for one
clock edge after ‘cnt_eq’ goes true
– This means that the COUNTER will increment to

HIGH+1, sometimes this makes a difference, need to be
aware of it

