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Finite State Machines

• The job of a finite state machine is to sequence 
operations on a datapath

R
E
G

R
E
G

+
R
E
G

XDIN DOUT

FSM Control (reg load lines, mux selects)

BR 1/99 2

Algorithmic State Chart (ASM)
• An ASM chart can be used to describe FSM 

behavior
Only three action signals can appear within an ASM chart:

State box.   Each box represents a state. 
Outputs within a state box is an 
UNCONDITIONAL output (always asserted 
in this state).

Decision box.  A condition in this box 
will decide next state condition.

Conditional output box.  If present, will 
always follow a decision box; output 
within it is conditional.
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Example ASM Chart
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Comments about ASM Example
• How many states?

– Three states, count the boxes

• How many inputs?
– Two inputs (Zero, Cnt_eq).  Count signals within 

decision boxes.  Inputs ALWAYS appear within 
decision boxes.

• How many outputs?
– 4 unconditional outputs (count signals within state 

boxes)
– 2 conditional output (count signals within conditional 

output boxes
– Outputs ALWAYS appear in either state boxes or 

conditional output boxes.
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FSM Implementation
Will always use VHDL to implement FSMs in this class.

Most common method is to use ONE process for implementing 
state registers, ONE process for implementing logic.
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State Encoding
• How we encode the states is an implementation 

decision
• For K states, need a minimum of log2(K) Dffs.
• Minimal encoding for example is two FFs

– S0 = 00,  S1 = 01,  S2 = 10  (counting order)
– S0 = 00,  S1 = 01,  S2 = 11, (Gray code for S0->S1->S2)

Gray code usually faster, less logic than counting order

• One Hot encoding, one FF per state
– S0 = 001, S1 = 010, S2 = 100
– For large FSMs (> 16 states), one hot can be faster than 

minimal encoding
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FSM Entity Declaration, Part of Architecture
library ieee;
use ieee.std_logic_1164.all;

-- FSM entity for RAM Zero example
entity ramfsm is
port ( clk, reset:  in std_logic;

zero, cnt_eq:  in std_logic;  -- control inputs
set_busy, clr_busy:  out std_logic; -- control outputs
addr_sel, cnt_en, ld_cnt, zero_we: out std_logic;
state: out std_logic_vector(1 downto 0)   -- state out for debugging   

);

end ramfsm;

architecture a of ramfsm is
signal pstate: std_logic_vector(1 downto 0); 
CONSTANT S0 : std_logic_vector(1 downto 0) := "00";   --- state encoding
CONSTANT S1 : std_logic_vector(1 downto 0) := "01";
CONSTANT S2 : std_logic_vector(1 downto 0) := "10";
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FSM Architecture, One process  (cont)
begin
state <= pstate;           -- look at present state for debugging purposes
stateff:process(clk)      -- process has state transitions ONLY
begin
if (reset = '1') then   pstate <= S0;
elsif (clk'event and clk='1') then  -- rising edge of clock

CASE pstate IS
WHEN S0 =>  if (zero = '1') then pstate <= S1;  end if;
WHEN S1 =>  pstate <= S2;
WHEN S2 =>   if (cnt_eq = '1') then pstate <= S0 ;  end if;
WHEN others => pstate <= S0;

end case;
end if;

end process stateff;

set_busy <= '1' when (pstate  = S0 and zero = ‘1’) else '0';
ld_cnt <= '1' when (pstate = S1) else '0';
addr_sel <= '1' when (pstate = S2) else '0';   
zero_we <= '1' when (pstate = S2) else '0';
cnt_en <= '1' when (pstate = S2) else '0';
clr_busy <= '1' when (pstate = S2 and cnt_eq = '1') else '0';   
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Comments on One Process Implementation
• Stateff process defines state FFs and transistions 

between states
• Outputs of FSM are separate concurrent statements 

outside of process
• Can be confusing since you separate out the FSM 

outputs from their state definitions within the 
CASE statement

• If output code is placed within CASE statement 
then they would be protected by the clock check 
and thus would have DFFs placed on their outputs
– 1 clock cycle of latency to output assertion
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FSM Architecture, Two processes
architecture a of ramfsm is

signal pstate, nstate: std_logic_vector(1 downto 0);  

CONSTANT S0 : std_logic_vector(1 downto 0) := "00";   --- state encoding
CONSTANT S1 : std_logic_vector(1 downto 0) := "01";
CONSTANT S2 : std_logic_vector(1 downto 0) := "10";

begin
state <= pstate;           -- look at present state for debugging purposes

stateff:process(clk)      -- process has DFFs only
begin
if (reset = '1') then pstate <= S0;
elsif (clk'event and clk='1') then   

pstate <= nstate;    -- updated present state with next state
endif;

end process stateff;
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FSM Architecture, Two processes (cont)
comblogic: process (zero, cnt_eq, pstate)

begin
-- default assignments
nstate <= pstate;
set_busy <= '0'; clr_busy <= '0'; 
ld_cnt <= '0';
addr_sel <= '0';   
zero_we <= '0';
cnt_en <= '0';
CASE pstate IS

WHEN S0 =>  if (zero = '1') then
set_busy <= ‘1’; nstate <= S1; 
end if;

WHEN S1 => ld_cnt <= ’1'; nstate <= S2; 
WHEN S2 => zero_we <= '1' ; cnt_en <= '1' ; addr_sel <= '1’;

if (cnt_eq = '1') then
clr_busy <= '1’; nstate <= S0 ;  

end if;
WHEN others => nstate <= S0;

end case;
end if;

end process comblogic;
end a;
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Comments on Two Process Implementation
• Stateff process defines only FFs
• Comblogic process defines

– State transitions
– Output assertions
– Has natural mapping from ASM chart to CASE 

statement

• Default assignments to outputs in Comblogic
process very important
– A combinational process; do not want latches 

synthesized on outputs
– The assignment “pstate <= nstate” says to not change 

state unless directed to from within CASE statement.
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FSM Timing: Start Zero Operation
CLK

Pstate

Nstate

S0

S0 S1

S1

S2

Zero (ext. Input)

S2

Set_busy

Ld_cnt

Zero_we, cnt_en, addr_sel

Busy (external output)

BR 1/99 15

Comments

• Note that Pstate changes on active clock edge
• Conditional outputs will change based on present 

state AND external inputs
• Unconditional outputs change on clock edge and 

remain true as long as in the current state
• In order for BUSY to go high in State S1, 

‘set_busy’ must be asserted in S0 since BUSY 
comes from JK FF.
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FSM Timing: Finish Zero Operation
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Comments

• Note that for BUSY to go low in S0, then 
“clr_busy” had to be asserted in State S2.

• Note that the ‘cnt_en’ signal stays true for one 
clock edge after  ‘cnt_eq’ goes true
– This means that the COUNTER will increment to 

HIGH+1, sometimes this makes a difference, need to be 
aware of it


