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Fixed Point Numbers

• The binary integer arithmetic you are used to is known 
by the more general term of Fixed Point arithmetic.
⇒Fixed Point means that we view the decimal point being in 

the same place for all numbers involved in the calculation.
⇒For integer interpretation, the decimal point is all the way to 

the right
$C0

+ $25
--------

$E5

192.
+   37.
--------

229.

Unsigned integers,  decimal point to 
the right.

A common notation for fixed point is ‘X.Y’, where X is the 
number of digits to the left of the decimal point, Y is the number 
of digits to the right of the decimal point.
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Fixed Point (cont).

• The decimal point can actually be located anywhere in 
the number -- to the right, somewhere in the middle, to 
the right

$11
+ $1F
--------

$30

Addition of two 8 bit numbers; different interpretations of 
results based on location of decimal point

17
+   31
--------

48

xxxxxxxx.0
decimal point to right. 
This is 8.0 notation.

4.25
+   7.75
--------

12.00

xxxxxx.yy
two binary fractional 
digits. This is 6.2 
notation.

0.07
+   0.12
--------

0.19

0.yyyyyyyy  
decimal point to left (all 
fractional digits). This is 
0.8 notation.
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Unsiged Overflow

• Recall that a carry out of the Most Significant Digit is 
an unsigned overflow. This indicates an error - the 
result is NOT correct!

$FF
+ $01
--------

$00

255
+      1
--------

0

63.75
+    0.25
-----------

0   

xxxxxxxx.0
decimal point to right xxxxxx.yy

two binary fractional 
digits (6.2 notation)

0.yyyyyyyy  
decimal point to left (all 
fractional digits). This 
0.8 notation

0.99600
+   0.00391
-----------

0   

Addition of two 8 bit numbers; different interpretations of 
results based on location of decimal point
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Saturating Arithmetic
• Saturating arithmetic means that if an overflow occurs, 

the number is clamped to the maximum possible value.
⇒ Gives a result that is closer to the correct value
⇒ Used in DSP, Graphic applications.
⇒ Requires extra hardware to be added to binary adder. 
⇒ Pentium MMX instructions have option for saturating arithmetic.

$FF
+ $01
--------

$FF

255
+      1
--------

255

63.75
+    0.25
-----------

63.75   

xxxxxxxx.0
decimal point to right xxxxxx.yy

two binary fractional 
digits.

0.yyyyyyyy  
decimal point to left (all 
fractional digits)

0.99600
+   0.00391
-----------

0.99600   
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Saturating Arithmetic
The MMX instructions perform SIMD operations between 
MMX registers on packed bytes, words, or dwords. 

The arithmetic operations can made to operate in Saturation 
mode. 

What saturation mode does is clip numbers to Maximum 
positive or maximum negative values during arithmetic.

In normal mode: FFh  + 01h  =  00h    (unsigned overflow)
In saturated, unsigned mode: FFh + 01 = FFh (saturated to 
maximum value, closer to actual arithmetic value)

In normal mode:   7fh + 01h = 80h (signed overflow) 

In saturated, signed mode:  7fh + 01 =  7fh  (saturated to max 
value)
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Saturating Adder: Unsigned and 2’Complement
• For an unsigned saturating adder, 8 bit:

⇒Perform binary addition
⇒If Carryout of MSB =1, then result should be a $FF.
⇒If Carryout of MSB =0, then result is binary addition result.

• For a 2’s complement saturating adder, 8 bit:
⇒Perform binary addition
⇒If Overflow = 1, then:

→If one of the operands is negative, then result is $80
→If one of the operands is positive, then result is $7f

⇒If Overflow = 0, then result is binary addition result. 
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Saturating Adder: Unsigned,  4 Bit example

A[3:0]

B[3:0]
T[3:0]

+
CO

0

1111
1 SUM[3:0]

0

1

S
2/1 Mux 
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Saturating Adder: Signed,  4 Bit example

A[3:0]

B[3:0]
T[3:0]

+
0

A3 A3’A3’A3’
1 SUM[3:0]

Vflag = T3 A3’ B3’  +  T3’ A3 B3

Vflag is true if sign of both operands are the same (both negative, both positive) and 
different from Sum (overflow if add two positive numbers, get a negative or add two 
negative numbers and get a positive number.  Can’t get overflow if add a postive and 
a negative).

Saturated value has same sign as one of the operands, with other bits equal to NOT 
(sign) :   0111 (positive saturation), 1000 (negative saturation).
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Altera Parameterized Modules

We will use Altera parameterized modules (LPMs) for many 
datapath functions such as adders, multipliers, muxes, counters, etc.

The port/parameter list is used to set values of parameters (such as 
data width) and enable/disable optional pins. Enabling/disabling
optional pins adds/subtracts functionality from the LPM.

LPMs are found in the ‘mega_lpm’ library when you access the 
Altera parts list.

Once an LPM is placed in your schematic, select the component 
and choose ‘Edit Ports/Parameters’ to change the ports or 
parameters. 

8/26/2002

LPM_ADD_SUB

Symbol with no parameters 
set.
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LPM_ADD_SUB  Ports/Parameters

Help button 
for this LPM

Used to 
enable/disable 
selected port

Set value of 
selected 
parameter
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More on LPM_ADD_SUB  ports/parameters

At a minimum, you must set the lpm_width parameter to some 
value. This determines the width of the inputs/outputs.

You can enable the add_sub port if you want this LPM to do both 
addition and subtraction.

Enabling the clock pin and setting the lpm_pipeline value to 
something other than 0 will add pipelining to the adder (will 
discuss what this means later).

The parameter maximize_speed can be set to an integer between 0 
and 10 – the higher the value, the more the adder structure will be 
optimized for speed.

Use the “Help on LPM_ADD_SUB” to get a full description of 
the ports and parameters.
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Multi-Dimensional Busses

Some LPMs use multi-dimensional busses.  Two separate busses:

A[7..0], B[7..0]

Can be represented by a single multi-dimensional bus:

DATA[1..0][7..0]

Can refer to each separate 8-bit bus via:
DATA[0][7..0]
DATA[1][7..0]
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LPM_MUX
LPM_WIDTH = 8,  LPM_SIZE = 4  gives a 4-to-1 mux with 
8 bit inputs

0

1
8

8

8

8

8

2

3

2

lpm_width = 8, lpm_size = 4

sel[1..0]

data[3..0][7..0]
dout[7..0]

lpm_size controls number of input busses, lpm_width controls 
width of each input bus.    Width of ‘sel’ input will 
ceiling(log2(lpm_size))
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Connecting to Multi-dimensional busses

To connect a single dimensional bus such as A[7..0] to a multi-
dimensional bus, one way to do it is to write a VHDL mode that 
is a buffer function:

dout <= din;

These buffers will be removed during the optimization/mapping 
process.

Connects single dimensional bus b[7..0] to multi-
dimension bus bmult[1][7..0]
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Connecting to Multi-dimensional busses (cont)

Another way is through bus labeling

lpm_width = 8, lpm_size = 4

sel[1..0]

dout[7..0]
a[7..0],b[7..0],c[7..0],d[7..0]

Commas separate bus 
names connected to 
multi-dimensional bus. 
First bus name 
connected to highest 
index, last bus name to 
lowest index.

a[7..0] → data[3][7..0]
b[7..0] → data[2][7..0]
c[7..0] → data[1][7..0]
d[7..0] → data[0][7..0]
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VHDL Templates in Maxplus

When editing a VHDL text file, 
can insert VHDL templates into 
the file.  Do this to avoid common 
syntax errors.

Also, make sure the file extension 
is ‘.vhd’ when saved.  The default 
extension is ‘.tdf’, which causes 
the file to be processed with 
‘Altera HDL’ compiler, not the 
VHDL compiler!!! 
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Multiplication 

Multiplication of a K bit number by an L bit number gives a 
product that is  K+L bits wide.  

Usually, both operands are same width.  So N x N multiplication 
gives a product that is 2N bits wide:

%  110
x  % 111
----------

110
110

110
----------

101010 = $2A = 42

6
x    7
--------

42

Note that 3 bits x 3 bits  gives 6 bit 
product.
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Multipliers and Datapaths

Typically, a datapath is of fixed width.   A multiplier output then 
needs to be the same width as the operands.  So, for N bit 
operands, only N bits of the 2N bit product will be kept.

Obviously, want to drop the N least significant bits to form the
truncated result. 

%  110
x  % 111
----------

110
110

110
----------

101010 

0.75
x    0.875
--------

0.65625

6 bits of precision:
101010 = 0.5 + 0.125 +  0.03125

= 0.65625

3 bits of precision
101 =   0.5 + 0.125

=  0.625

Fixed point
representation
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Multiplier as a Building Block

We will use a multiplier as a building block in this class.  A 
Computer Arithmetic class can show you how the internals 
of a multiplier is constructed. 

The most common use of a multiplier is as a combinational 
logic block.  Given a change on the INPUTs, the OUTPUT 
will be ready after a propagation delay.

A[7:0]

B[7:0] x
P[7:0] 8x8 multiplier, only 

keep 8 bits of 
product.

We will talk more about multipliers later in the semester.
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Example Fixed Point Application

Colors in Computer Graphics applications represented by Red, 
Green, Blue (RGB) components.

Each component (RGB) is 8 bits; hence the term 24 bit color.

As an 0.8 Fixed point number, colors range from:
0.0 =<    color  < 1.0 

(dark colors)         (light colors)
0.0 = % 00000000 

0.99 = % 11111111

Blue variation
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Blend Operation

A blend operation takes two colors and blends them together to 
form a new color.  The Blend Factor (F) controls how much each 
color contributes

Cnew = Ca * F  +  (1 - F)  Cb

If F is 0.5 (%10000000)  then the new color is an equal blend of
Ca, Cb.

If F is 0, then new color is simply Cb.

If F is 1, then new color is simply Ca. (can’t get 1.0 with just 8 
bits, will talk more about this problem later).
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Representing 1.0
When the multiplication  Ca * F is performed,  if F = 1.0 want 
the result to be exactly equal to the original value ‘Ca’.

However, the closest we can get to 1.0 using 8 bits (assuming 
0.8 fixed point notation)  is 0.111111112 =  0.99610  

0.996 x  Ca  is NOT EQUAL to Ca!

To solve this problem, we will use 9 bits to represent the ‘F’ 
value.   The lower 8 bits will be the fractional representation of 
F.  If F=1.0, then the MSB of F is equal to a ‘1’, and the other
bits are a don’t care.

When multiplying Ca * F,  will use the lower 8 bits of F for the
multiply. If the MSB of F = ‘1’, then ignore output of multiplier 
and use ‘Ca’.
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F * Ca

CA[7:0]

x
T[7:0]

0

1

F[7:0]

F8

P[7:0]

Note that an 8 x 8 bit multiply actually produces 16 bits. We are 
dropping the lower 8 bits.  In 0.8 fixed point notation, this means 
that we are ignoring the lower 8 least significant bits which is a 
fractional part that is less than 1/28  (ignoring fractional part < 
0.00390625).

F[8:0]

If F = 1.0, then F = ‘1xxxxxxxx’ (MSB of F = ‘1’).
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1.0 -F

Because speed is important, 1-F will not  use a subtractor.  The 
following is done instead:

If F = 1.0 (F8 = ‘1’), then  result of 1.0 -F =   0.0 (‘000000000’)

Else if  F = 0, the result of 1.0 – F = 1.0 (F = ‘100000000’)

else   F8 = ‘0’,  F[7..0] = complement of (F[7..0]).

Note that if F is not equal to 1.0 or 0.0, the subtraction of 1.0 –F is 
estimated by complementing the lower 8-bits of F.  This will be 
incorrect by 1 LSB, but will save gates and increase speed.
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Multiplier LPM - lpm_mult Can specify a constant input 
value for ‘A’ or ‘B’, will 
generate a more efficient 
multiplier.

Width of output, we will usually 
set width of output to be same as 
input A,B input width – will drop 
least significant bits.

Will use this later to add pipeline 
stages to multiplier. Also will 
have to enable the clock pin.

Use this to specify “SIGNED” or 
“UNSIGNED” (default value) –
hardware is different! 


