Fixed Point Numbers

- The binary integer arithmetic you are used to is known by the more general term of Fixed Point arithmetic.
\Rightarrow Fixed Point means that we view the decimal point being in the same place for all numbers involved in the calculation.
\Rightarrow For integer interpretation, the decimal point is all the way to the right

A common notation for fixed point is ' $\mathrm{X} . \mathrm{Y}$ ', where X is the number of digits to the left of the decimal point, Y is the number of digits to the right of the decimal point.

8/26/2002

Fixed Point (cont).

- The decimal point can actually be located anywhere in the number -- to the right, somewhere in the middle, to the right
Addition of two 8 bit numbers; different interpretations of results based on location of decimal point

\$11	17	4.25	0.07
+ \$1F	+ 31	+ 7.75	+ 0.12
--------	----	------	----
\$30	48	12.00	0.19
8/26/2002	Xxxxxxxx. 0 decimal point to right. This is 8.0 notation.	xxxxxx.yy two binary fractional digits. This is 6.2 notation.	0. yyyyyyyy decimal point to left (all fractional digits). This is 0.8 notation.

Saturating Arithmetic

- Saturating arithmetic means that if an overflow occurs, the number is clamped to the maximum possible value.
\Rightarrow Gives a result that is closer to the correct value
\Rightarrow Used in DSP, Graphic applications.
\Rightarrow Requires extra hardware to be added to binary adder.
\Rightarrow Pentium MMX instructions have option for saturating arithmetic.

Saturating Arithmetic

The MMX instructions perform SIMD operations between MMX registers on packed bytes, words, or dwords.
The arithmetic operations can made to operate in Saturation mode.
What saturation mode does is clip numbers to Maximum positive or maximum negative values during arithmetic.
In normal mode: $\quad \mathrm{FFh}+01 \mathrm{~h}=00 \mathrm{~h} \quad$ (unsigned overflow) In saturated, unsigned mode: $\mathrm{FFh}+01=\mathrm{FFh}$ (saturated to maximum value, closer to actual arithmetic value)

In normal mode: $7 \mathrm{fh}+01 \mathrm{~h}=80 \mathrm{~h}$ (signed overflow)
In saturated, signed mode: $7 \mathrm{fh}+01=7 \mathrm{fh}$ (saturated to max value)

8/26/2002

Saturating Adder: Unsigned and 2'Complement

- For an unsigned saturating adder, 8 bit:
\Rightarrow Perform binary addition
\Rightarrow If Carryout of $\mathrm{MSB}=1$, then result should be a $\$ F F$.
\Rightarrow If Carryout of $\mathrm{MSB}=0$, then result is binary addition result.
- For a 2's complement saturating adder, 8 bit:
\Rightarrow Perform binary addition
\Rightarrow If Overflow $=1$, then:
\rightarrow If one of the operands is negative, then result is $\$ 80$
\rightarrow If one of the operands is positive, then result is $\$ 7 \mathrm{f}$
\Rightarrow If Overflow $=0$, then result is binary addition result.

Saturating Adder: Unsigned, 4 Bit example

8/26/2002

Saturating Adder: Signed, 4 Bit example

Vflag is true if sign of both operands are the same (both negative, both positive) and different from Sum (overflow if add two positive numbers, get a negative or add two negative numbers and get a positive number. Can't get overflow if add a postive and a negative).
Saturated value has same sign as one of the operands, with other bits equal to NOT (sign) : 0111 (positive saturation), 1000 (negative saturation).
8/26/2002

LPM_ADD_SUB Ports/Parameters

Abstract

\section*{Altera Parameterized Modules}

We will use Altera parameterized modules (LPMs) for many datapath functions such as adders, multipliers, muxes, counters, etc.

The port/parameter list is used to set values of parameters (such as data width) and enable/disable optional pins. Enabling/disabling optional pins adds/subtracts functionality from the LPM.

LPMs are found in the 'mega_lpm' library when you access the Altera parts list.

Once an LPM is placed in your schematic, select the component and choose 'Edit Ports/Parameters' to change the ports or parameters.

,

More on LPM_ADD_SUB ports/parameters

At a minimum, you must set the lpm_width parameter to some value. This determines the width of the inputs/outputs.

You can enable the add_sub port if you want this LPM to do both addition and subtraction.

Enabling the clock pin and setting the lpm_pipeline value to something other than 0 will add pipelining to the adder (will discuss what this means later).
The parameter maximize_speed can be set to an integer between 0 and 10 - the higher the value, the more the adder structure will be optimized for speed.

Use the "Help on LPM_ADD_SUB" to get a full description of the ports and parameters.

8/26/2002

Multi-Dimensional Busses

Some LPMs use multi-dimensional busses. Two separate busses:

$$
\mathrm{A}[7 . .0], \mathrm{B}[7 . .0]
$$

Can be represented by a single multi-dimensional bus:

```
DATA[1..0][7..0]
```

Can refer to each separate 8-bit bus via:

```
DATA[0][7..0]
DATA[1][7..0]
```

8/26/2002

Connecting to Multi-dimensional busses

To connect a single dimensional bus such as $\mathrm{A}[7 . .0]$ to a multidimensional bus, one way to do it is to write a VHDL mode that is a buffer function:

$$
\text { dout }<=\operatorname{din}
$$

These buffers will be removed during the optimization/mapping process.

Connects single dimensional bus $b[7 . .0]$ to multidimension bus bmult[1][7..0]

8/26/2002

LPM_MUX

LPM_WIDTH $=8$, LPM_SIZE $=4$ gives a 4-to-1 mux with 8 bit inputs

lpm_size controls number of input busses, lpm_width controls width of each input bus. Width of 'sel' input will $\underset{8 / 262002}{\operatorname{eiling}}\left(\log _{2}(\right.$ lpm_size $\left.)\right)$ 8/26/2002

Connecting to Multi-dimensional busses (cont)

lowest index.

$$
\begin{array}{ll}
\hline \mathrm{a}[7 . .0] \rightarrow & \operatorname{data}[3][7 . .0] \\
\mathrm{b}[7 . .0] \rightarrow & \operatorname{data}[2][7 . .0] \\
\mathrm{c}[7 . .0] \rightarrow & \operatorname{data}[1][7 . .0] \\
\mathrm{d}[7 . .0] \rightarrow & \text { data[0][7..0] }
\end{array}
$$

VHDL Templates in Maxplus

 can insert VHDL templates into the file. Do this to avoid common syntax errors.

Also, make sure the file extension is '.vhd' when saved. The default extension is '.tdf', which causes the file to be processed with 'Altera HDL' compiler, not the VHDL compiler!!!

[^0]
Multiplication

Multiplication of a K bit number by an L bit number gives a product that is $\mathrm{K}+\mathrm{L}$ bits wide.

Usually, both operands are same width. So $\mathrm{N} \times \mathrm{N}$ multiplication gives a product that is 2 N bits wide:

8/26/2002

$$
\begin{array}{r}
6 \\
\times \quad 7 \\
------- \\
\hline 42
\end{array}
$$

Note that 3 bits $\times 3$ bits gives 6 bit product.

Multipliers and Datapaths

Typically, a datapath is of fixed width. A multiplier output then needs to be the same width as the operands. So, for N bit operands, only N bits of the 2 N bit product will be kept.

Obviously, want to drop the N least significant bits to form the truncated result.
$\% 110$
$\times \quad \% 111$
\qquad
110
110
110
Fixed point representation
3 bits of precision
101010
$101=0.5+0.125$
$=0.625$
8/26/2002

Example Fixed Point Application

Colors in Computer Graphics applications represented by Red, Green, Blue (RGB) components.

Each component (RGB) is 8 bits; hence the term 24 bit color.
As an 0.8 Fixed point number, colors range from:
$0.0=<$ color <1.0
(dark colors) (light colors)
$0.0=\% 00000000$

Blue variation
$0.99=\% 11111111$

8/26/2002

Blend Operation

A blend operation takes two colors and blends them together to form a new color. The Blend Factor (F) controls how much each color contributes

$$
\text { Cnew }=\mathrm{Ca} * \mathrm{~F}+(1-\mathrm{F}) \mathrm{Cb}
$$

If F is $0.5(\% 10000000)$ then the new color is an equal blend of Ca, Cb.

If F is 0 , then new color is simply Cb
If F is 1 , then new color is simply Ca . (can't get 1.0 with just 8 bits, will talk more about this problem later).

Representing 1.0

When the multiplication $\mathrm{Ca} * \mathrm{~F}$ is performed, if $\mathrm{F}=1.0$ want the result to be exactly equal to the original value ' Ca '.

However, the closest we can get to 1.0 using 8 bits (assuming 0.8 fixed point notation) is $0.11111111_{2}=0.996_{10}$

$0.996 \times \mathrm{Ca}$ is NOT EQUAL to Ca !

To solve this problem, we will use 9 bits to represent the ' F ' value. The lower 8 bits will be the fractional representation of F. If $\mathrm{F}=1.0$, then the MSB of F is equal to a ' 1 ', and the other bits are a don't care.

When multiplying $\mathrm{Ca} * \mathrm{~F}$, will use the lower 8 bits of F for the multiply. If the MSB of $F=$ ' 1 ', then ignore output of multiplier and use 'Ca'.

8/26/2002

Multiplier as a Building Block

We will use a multiplier as a building block in this class. A Computer Arithmetic class can show you how the internals of a multiplier is constructed.

The most common use of a multiplier is as a combinational logic block. Given a change on the INPUTs, the OUTPUT will be ready after a propagation delay.

We will talk more about multipliers later in the semester. 8/26/2002
8/26/2002

```


\section*{\(1.0-\mathrm{F}\)}

Because speed is important, 1-F will not use a subtractor. The following is done instead:

If \(\mathrm{F}=1.0\left(\mathrm{~F} 8=' 1\right.\) '), then result of \(1.0-\mathrm{F}=0.0\left({ }^{\prime} 000000000\right.\) ')
Else if \(\mathrm{F}=0\), the result of \(1.0-\mathrm{F}=1.0(\mathrm{~F}=\) ' 100000000 ' \()\)
else \(\mathrm{F} 8={ }^{\prime} 0\) ', \(\mathrm{F}[7 . .0]=\) complement of \((\mathrm{F}[7 . .0])\).

Note that if F is not equal to 1.0 or 0.0 , the subtraction of \(1.0-\mathrm{F}\) is estimated by complementing the lower 8 -bits of F . This will be incorrect by 1 LSB , but will save gates and increase speed.

8/26/2002
```


[^0]: 8/26/2002

