
1

8/26/2002

Fixed Point Numbers

• The binary integer arithmetic you are used to is known
by the more general term of Fixed Point arithmetic.
⇒Fixed Point means that we view the decimal point being in

the same place for all numbers involved in the calculation.
⇒For integer interpretation, the decimal point is all the way to

the right
$C0

+ $25

$E5

192.
+ 37.

229.

Unsigned integers, decimal point to
the right.

A common notation for fixed point is ‘X.Y’, where X is the
number of digits to the left of the decimal point, Y is the number
of digits to the right of the decimal point.

8/26/2002

Fixed Point (cont).

• The decimal point can actually be located anywhere in
the number -- to the right, somewhere in the middle, to
the right

$11
+ $1F

$30

Addition of two 8 bit numbers; different interpretations of
results based on location of decimal point

17
+ 31

48

xxxxxxxx.0
decimal point to right.
This is 8.0 notation.

4.25
+ 7.75

12.00

xxxxxx.yy
two binary fractional
digits. This is 6.2
notation.

0.07
+ 0.12

0.19

0.yyyyyyyy
decimal point to left (all
fractional digits). This is
0.8 notation.

8/26/2002

Unsiged Overflow

• Recall that a carry out of the Most Significant Digit is
an unsigned overflow. This indicates an error - the
result is NOT correct!

$FF
+ $01

$00

255
+ 1

0

63.75
+ 0.25

0

xxxxxxxx.0
decimal point to right xxxxxx.yy

two binary fractional
digits (6.2 notation)

0.yyyyyyyy
decimal point to left (all
fractional digits). This
0.8 notation

0.99600
+ 0.00391

0

Addition of two 8 bit numbers; different interpretations of
results based on location of decimal point

8/26/2002

Saturating Arithmetic
• Saturating arithmetic means that if an overflow occurs,

the number is clamped to the maximum possible value.
⇒ Gives a result that is closer to the correct value
⇒ Used in DSP, Graphic applications.
⇒ Requires extra hardware to be added to binary adder.
⇒ Pentium MMX instructions have option for saturating arithmetic.

$FF
+ $01

$FF

255
+ 1

255

63.75
+ 0.25

63.75

xxxxxxxx.0
decimal point to right xxxxxx.yy

two binary fractional
digits.

0.yyyyyyyy
decimal point to left (all
fractional digits)

0.99600
+ 0.00391

0.99600

8/26/2002

Saturating Arithmetic
The MMX instructions perform SIMD operations between
MMX registers on packed bytes, words, or dwords.

The arithmetic operations can made to operate in Saturation
mode.

What saturation mode does is clip numbers to Maximum
positive or maximum negative values during arithmetic.

In normal mode: FFh + 01h = 00h (unsigned overflow)
In saturated, unsigned mode: FFh + 01 = FFh (saturated to
maximum value, closer to actual arithmetic value)

In normal mode: 7fh + 01h = 80h (signed overflow)

In saturated, signed mode: 7fh + 01 = 7fh (saturated to max
value)

8/26/2002

Saturating Adder: Unsigned and 2’Complement
• For an unsigned saturating adder, 8 bit:

⇒Perform binary addition
⇒If Carryout of MSB =1, then result should be a $FF.
⇒If Carryout of MSB =0, then result is binary addition result.

• For a 2’s complement saturating adder, 8 bit:
⇒Perform binary addition
⇒If Overflow = 1, then:

→If one of the operands is negative, then result is $80
→If one of the operands is positive, then result is $7f

⇒If Overflow = 0, then result is binary addition result.

2

8/26/2002

Saturating Adder: Unsigned, 4 Bit example

A[3:0]

B[3:0]
T[3:0]

+
CO

0

1111
1 SUM[3:0]

0

1

S
2/1 Mux

8/26/2002

Saturating Adder: Signed, 4 Bit example

A[3:0]

B[3:0]
T[3:0]

+
0

A3 A3’A3’A3’
1 SUM[3:0]

Vflag = T3 A3’ B3’ + T3’ A3 B3

Vflag is true if sign of both operands are the same (both negative, both positive) and
different from Sum (overflow if add two positive numbers, get a negative or add two
negative numbers and get a positive number. Can’t get overflow if add a postive and
a negative).

Saturated value has same sign as one of the operands, with other bits equal to NOT
(sign) : 0111 (positive saturation), 1000 (negative saturation).

8/26/2002

Altera Parameterized Modules

We will use Altera parameterized modules (LPMs) for many
datapath functions such as adders, multipliers, muxes, counters, etc.

The port/parameter list is used to set values of parameters (such as
data width) and enable/disable optional pins. Enabling/disabling
optional pins adds/subtracts functionality from the LPM.

LPMs are found in the ‘mega_lpm’ library when you access the
Altera parts list.

Once an LPM is placed in your schematic, select the component
and choose ‘Edit Ports/Parameters’ to change the ports or
parameters.

8/26/2002

LPM_ADD_SUB

Symbol with no parameters
set.

8/26/2002

LPM_ADD_SUB Ports/Parameters

Help button
for this LPM

Used to
enable/disable
selected port

Set value of
selected
parameter

8/26/2002

More on LPM_ADD_SUB ports/parameters

At a minimum, you must set the lpm_width parameter to some
value. This determines the width of the inputs/outputs.

You can enable the add_sub port if you want this LPM to do both
addition and subtraction.

Enabling the clock pin and setting the lpm_pipeline value to
something other than 0 will add pipelining to the adder (will
discuss what this means later).

The parameter maximize_speed can be set to an integer between 0
and 10 – the higher the value, the more the adder structure will be
optimized for speed.

Use the “Help on LPM_ADD_SUB” to get a full description of
the ports and parameters.

3

8/26/2002

Multi-Dimensional Busses

Some LPMs use multi-dimensional busses. Two separate busses:

A[7..0], B[7..0]

Can be represented by a single multi-dimensional bus:

DATA[1..0][7..0]

Can refer to each separate 8-bit bus via:
DATA[0][7..0]
DATA[1][7..0]

8/26/2002

LPM_MUX
LPM_WIDTH = 8, LPM_SIZE = 4 gives a 4-to-1 mux with
8 bit inputs

0

1
8

8

8

8

8

2

3

2

lpm_width = 8, lpm_size = 4

sel[1..0]

data[3..0][7..0]
dout[7..0]

lpm_size controls number of input busses, lpm_width controls
width of each input bus. Width of ‘sel’ input will
ceiling(log2(lpm_size))

8/26/2002

Connecting to Multi-dimensional busses

To connect a single dimensional bus such as A[7..0] to a multi-
dimensional bus, one way to do it is to write a VHDL mode that
is a buffer function:

dout <= din;

These buffers will be removed during the optimization/mapping
process.

Connects single dimensional bus b[7..0] to multi-
dimension bus bmult[1][7..0]

8/26/2002

Connecting to Multi-dimensional busses (cont)

Another way is through bus labeling

lpm_width = 8, lpm_size = 4

sel[1..0]

dout[7..0]
a[7..0],b[7..0],c[7..0],d[7..0]

Commas separate bus
names connected to
multi-dimensional bus.
First bus name
connected to highest
index, last bus name to
lowest index.

a[7..0] → data[3][7..0]
b[7..0] → data[2][7..0]
c[7..0] → data[1][7..0]
d[7..0] → data[0][7..0]

8/26/2002

VHDL Templates in Maxplus

When editing a VHDL text file,
can insert VHDL templates into
the file. Do this to avoid common
syntax errors.

Also, make sure the file extension
is ‘.vhd’ when saved. The default
extension is ‘.tdf’, which causes
the file to be processed with
‘Altera HDL’ compiler, not the
VHDL compiler!!!

8/26/2002

Multiplication

Multiplication of a K bit number by an L bit number gives a
product that is K+L bits wide.

Usually, both operands are same width. So N x N multiplication
gives a product that is 2N bits wide:

% 110
x % 111

110
110

110

101010 = $2A = 42

6
x 7

42

Note that 3 bits x 3 bits gives 6 bit
product.

4

8/26/2002

Multipliers and Datapaths

Typically, a datapath is of fixed width. A multiplier output then
needs to be the same width as the operands. So, for N bit
operands, only N bits of the 2N bit product will be kept.

Obviously, want to drop the N least significant bits to form the
truncated result.

% 110
x % 111

110
110

110

101010

0.75
x 0.875

0.65625

6 bits of precision:
101010 = 0.5 + 0.125 + 0.03125

= 0.65625

3 bits of precision
101 = 0.5 + 0.125

= 0.625

Fixed point
representation

8/26/2002

Multiplier as a Building Block

We will use a multiplier as a building block in this class. A
Computer Arithmetic class can show you how the internals
of a multiplier is constructed.

The most common use of a multiplier is as a combinational
logic block. Given a change on the INPUTs, the OUTPUT
will be ready after a propagation delay.

A[7:0]

B[7:0] x
P[7:0] 8x8 multiplier, only

keep 8 bits of
product.

We will talk more about multipliers later in the semester.

8/26/2002

Example Fixed Point Application

Colors in Computer Graphics applications represented by Red,
Green, Blue (RGB) components.

Each component (RGB) is 8 bits; hence the term 24 bit color.

As an 0.8 Fixed point number, colors range from:
0.0 =< color < 1.0

(dark colors) (light colors)
0.0 = % 00000000

0.99 = % 11111111

Blue variation

8/26/2002

Blend Operation

A blend operation takes two colors and blends them together to
form a new color. The Blend Factor (F) controls how much each
color contributes

Cnew = Ca * F + (1 - F) Cb

If F is 0.5 (%10000000) then the new color is an equal blend of
Ca, Cb.

If F is 0, then new color is simply Cb.

If F is 1, then new color is simply Ca. (can’t get 1.0 with just 8
bits, will talk more about this problem later).

8/26/2002

Representing 1.0
When the multiplication Ca * F is performed, if F = 1.0 want
the result to be exactly equal to the original value ‘Ca’.

However, the closest we can get to 1.0 using 8 bits (assuming
0.8 fixed point notation) is 0.111111112 = 0.99610

0.996 x Ca is NOT EQUAL to Ca!

To solve this problem, we will use 9 bits to represent the ‘F’
value. The lower 8 bits will be the fractional representation of
F. If F=1.0, then the MSB of F is equal to a ‘1’, and the other
bits are a don’t care.

When multiplying Ca * F, will use the lower 8 bits of F for the
multiply. If the MSB of F = ‘1’, then ignore output of multiplier
and use ‘Ca’.

8/26/2002

F * Ca

CA[7:0]

x
T[7:0]

0

1

F[7:0]

F8

P[7:0]

Note that an 8 x 8 bit multiply actually produces 16 bits. We are
dropping the lower 8 bits. In 0.8 fixed point notation, this means
that we are ignoring the lower 8 least significant bits which is a
fractional part that is less than 1/28 (ignoring fractional part <
0.00390625).

F[8:0]

If F = 1.0, then F = ‘1xxxxxxxx’ (MSB of F = ‘1’).

5

8/26/2002

1.0 -F

Because speed is important, 1-F will not use a subtractor. The
following is done instead:

If F = 1.0 (F8 = ‘1’), then result of 1.0 -F = 0.0 (‘000000000’)

Else if F = 0, the result of 1.0 – F = 1.0 (F = ‘100000000’)

else F8 = ‘0’, F[7..0] = complement of (F[7..0]).

Note that if F is not equal to 1.0 or 0.0, the subtraction of 1.0 –F is
estimated by complementing the lower 8-bits of F. This will be
incorrect by 1 LSB, but will save gates and increase speed.

8/26/2002

Multiplier LPM - lpm_mult Can specify a constant input
value for ‘A’ or ‘B’, will
generate a more efficient
multiplier.

Width of output, we will usually
set width of output to be same as
input A,B input width – will drop
least significant bits.

Will use this later to add pipeline
stages to multiplier. Also will
have to enable the clock pin.

Use this to specify “SIGNED” or
“UNSIGNED” (default value) –
hardware is different!

