
1

BR 1/99 1

DataPath Elements

• Altera LPM library has many elements useful for
building common datapath functions
– lpm_ram_dq - recommended for either asynchronous or

synchronous RAM. Uses EAB in Flex 10K family.
– lpm_ram_io - recommended for asynchronous RAM.

Uses EAB in Flex 10K in family.
– lpm_compare - comparing two values. Outputs are

AEQB, ALB, ALEB, AGB, AGEB
– lpm_counter - versatile counter function

BR 1/99 2

Synchronous vs Asychronous RAM

• Asynchronous RAM looks like a combinational
element
– No Clock
– Data available after propagation delay from address
– Address MUST BE stable while WE (write enable) is

high so that only ONE location is written too. Data must
also be stable during write cycle.

• Synchronous RAM has a clock input and will latch
input data and control lines (address, data)

BR 1/99 3

Usually use Counters to Drive address Lines

addr

RAM
Counter

dout

Cnt_en

FSM

WE
Dout

Din

BR 1/99 4

If WE, Address changes same Clock Cycle,
may write multiple locations in Async RAM

Clk

addr

Cnt_en

WE

Delays can cause WE to change before or after address. If
before, then can write to both Loc X and Loc Y

Loc X Loc Y

BR 1/99 5

Make WE valid only during 2nd half
of clock cycle

addr

Async RAM
Counter

dout

Cnt_en

FSM

WE

Dout

CLK

Din

BR 1/99 6

Make WE valid during 2nd half of Clock Cycle

Clk

addr

Cnt_en

WE

WE must go invalid before address changes – assume delay
through AND gate less than register delay of address value.

Loc X Loc Y Loc Z

Addr stable when WE valid

2

BR 1/99 7

Sync Ram latches control, addr, input data.
Can also latch output data.

addr

Sync RAM
Counter

dout

Cnt_en

FSM WE

Dout

CLK

Din

CLK

Registers used for latching
input/output data are internal to RAM.

BR 1/99 8

Sync RAM latches address, WE

Clk

addr

Cnt_en

WE

Loc X Loc Y

WE, addr latched here

Write occurs here

BR 1/99 9

Will usually prefer Sync Ram

• Sync RAM is easier to use from a timing
perspective but adds latency to operations
– If address coming from counter, then have an extra clock

cycle of latency from when counter value is updated to
when RAM data is available for that address

• In our Lab exercises and class examples, will
normally use synchronous RAM
– Will not latch output data unless specifically needed
– Options to latch control, input data, output data available

on LPM_RAM_DQ

BR 1/99 10

LPM_RAM_DQ Timing

CLK

Q

F
Addr

$3

0 1 2 3

$5 $A $D

4

Asynchronous – no latching
LPM_Address_Control= “Unregistered”

LPM_indata = “Unregistered”
LPM_Outdata = “Unregistered”
Assume 16x4 RAM
Contents: loc $F= 3, $0= 5, $1= $A, $2= $D, $3 = $8, $4=$B

$8 $B

BR 1/99 11

LPM_RAM_DQ Timing

CLK

??Q

F
Addr

$3

Synchronous, latch input data and control
LPM_Address_Control= “Registered” (on ‘inclock’)
LPM_indata = “Registered” (on ‘inclock’)
LPM_Outdata = “Unregistered”
Assume 16x4 RAM
Contents: loc $F= 3, $0= 5, $1= $A, $2= $D, $3 = $8, $4=$B

0 1 2 3

$5 $A $D $8

4

BR 1/99 12

LPM_RAM_DQ Timing

CLK

??Q

F
Addr

$3

0 1 2 3

$5 $A $D??

4

Synchronous, latch input data, control, output data
LPM_Address_Control= “Registered” (on ‘inclock’)
LPM_indata = “Registered” (on ‘inclock’)
LPM_Outdata = “Registered” (on ‘outclock’)
Assume 16x4 RAM
Contents: loc $F= 3, $0= 5, $1= $A, $2= $D, $3 = $8, $4=$B

3

BR 1/99 13

Asynchronous vs Synchronous Control

• Some LPMS have both synchronous and
asynchronous control lines
– Counter has ‘aload’ (asynchronous load), and ‘sload’

(synchronous load); ‘aclr’ and ‘sclr’ (async and sync
clear)

• Should always use a Synchronous control line if
possible, especially if connected to a FSM output.
– Any glitch on an asynchronous control line can trigger it
– If using a FSM output for an asynchronous control, the

output should come directly from a Flip-Flop output,
NOT from combinational gating.

BR 1/99 14

Sample Problem

• Create a synchronous RAM block that has a block
transfer capability capability

• If ‘xfer’ input asserted, assert BUSY output and
transfer WCNT # of word starting at FROM to
locatoion TO .

• Counters WCNT, FROM, TO are loaded before
transfer operation started.

• RAM size will 64 x 8

BR 1/99 15

Interface
• Inputs

– clk, reset
– we - write enable for RAM
– cmd_we - asserted when writing WNCT, TO, FROM

registers. Register choice determined by Din1,0 bits:
“00” →WCNT, “01” → FROM, “10” → TO .

– DIN[7..0] Data bus to RAM
– Addr[5..0] Address bus to RAM.
– xfer - start a zero cycle

• Outputs
– DOUT[7..0]
– Busy - when assert, busy zeroing RAM

BR 1/99 16

What Datapath Elements Do We need?

• Counters to hold WCNT, TO, FROM values
– Use LPM_COUNTER

• Need the RAM (use LPM_RAM_DQ)
• Muxes (LPM_MUX or VHDL)

BR 1/99 17

Datapath Block Diagram

TO Cntr

FROM Cntr

addr

dout

data

Addr[5..0]

Din[7..0]

Dout[7..0]

Control lines not shown on datapath diagram

WCNT Cntr

Sync RAM

BR 1/99 18

What Control Lines do we need from FSM?
(look at each Datapath component)

Counters: Load lines for WCNT, TO, FROM registers driven
externally and not under FSM control. Count enables for these
counters need to be exercised by FSM. WCTN will be
configured to count DOWN, the TO,FROM counters will count
UP.

Mux Selects: When doing ‘xfer’ operation, counters will be
driving RAM address lines and RAM input data line will be a
feedback from the RAM output.

RAM: The WE of the RAM needs to be an OR of the external
WE and a WE that is provided by the FSM.

4

BR 1/99 19

FSM Interface
Inputs:

Clk, Reset
xfer - kicks off transfer operation
cnt_words[5..0] - WCNT counter value – need to check this

to see if finished.

Outputs:

• busy – busy output

• addr_sel[1..0] -- mux select line for addr muxes

• ce_from, ce_to, ce_words -- count enables for FROM, TO,
WCNT counters

• fsm_we -- WE to RAM

• data_sel – mux select line for RAM input data mux
BR 1/99 20

What operations do we need for FSM?
• Wait for XFER command (FSM simply waits for

‘xfer’ input to be asserted).
• Read a value from RAM using TO counter address;

increment the TO counter and decrement the
WCNT counter

• Write data value to RAM via FROM address
counter; increment the FROM counter. Loop to
read state unless WCNT counter value = 0.

Three DISTINCT operations, need three STATES in
FSM. Cannot do both a Read and Write in the same
clock cycle.

BR 1/99 21

xfer?

Assert busy,
ce_from,ce_words

addr_sel = TO_CNTR

Assert busy, ce_to, fsm_we
Data_sel = RAM_OUTPUT

Addr_sel = FROM_CNT

Cnt_words = 0?

Yes

No

NoYes

S0

S1

S2

BR 1/99 22

Datapath + Control

addr

dout

Data

we

Addr[5..0]

Din[7..0]

Dout[7..0]

decode

Din[1..0]

Cmd_we

TO Cntrld
en

din

FROM Cntrld
en

din

WCNT Cntrld
en

din

we

fsm_we

data_sel

addr_sel

ce_to
ce_from

ce_words

xfer

FSM cnt_words

Sync RAM

BR 1/99 23

addr

dout

data
Din[7..0]

Dout[7..0]

Sync RAM

Comments: Why does the feedback path from Dout to
Din correctly?

It only works because this is a sync RAM that has addr, input
data, and control registered.

The DOUT value are the memory contents corresponding to the
address from the last clock edge (state S1, ‘to’ address).

The current clock edge (state S2) will latch both this data and
current address (‘from’ counter value) for the write operation.

WOULD NOT WORK IF ASYNC RAM.
BR 1/99 24

Design Implementation

• Once the datapath block diagram and ASM chart is
done, the ‘design’ work is done. What is left is
implementation.

• Decide what parts of the datapath will be
implemented in VHDL, what parts using LPMs
– The FSM control will certainly be done in VHDL
– Misc registers can be easily included in the VHDL FSM

code as well instead of using separate datapath
components.

• Do the schematic of the datapath FIRST!
– Sometime just hooking up the datapath elements will

expose a flaw in your reasoning.

5

BR 1/99 25

Design Implementation (cont.)
• After Datapath is finished, do FSM VHDL code

– ALWAYS bring the FSM state value out as an external
output for debugging purposes!!!

– Should be able to write FSM code directly from ASM
chart

• DEBUG - take a systematic approach
– Your design will NOT WORK the first time - be

prepared to debug.
– Attach external pins to as many internal nets as possible

so that you can observe the internal net values
– Debug your design ONE state at a time. Do not test the

next state until the current state works as expected.

BR 1/99 26

Design Implementation (cont.)

• Until you get more confident with VHDL, should
use as many LPM components as you can
– Can easily examine input/outputs to LPMs in waveform

viewer so makes it easier to debug

• Always use a VERY LONG clock cycle to start out
with so that you do not encounter timing problems
– To be absolutely safe, make external inputs change on

the falling edge if your internal logic is rising edge
triggered (this gives you 1/2 clock of setup time).

BR 1/99 27

The remaining slides are from an older discussion about a RAM
with zeroing capability.

The implementation is similar to that of the RAM with block
transfer capability.

The Zero’ing RAM shows an alternate method for
implementing the busy flag.

A separate register is used to hold the LOW value instead of
simply using the counter for this storage. The only advantage
to this is that the LOW value is preserved after a zero operation
and could be reused.

BR 1/99 28

Sample Problem

• Create a synchronous RAM block that has a
‘zeroing’ capability

• If ‘zero’ input asserted, assert BUSY output and
zero RAM block

• Can load a LOW value, and HIGH value that will
set the RANGE of the memory to zero.

• RAM size will 64 x 8

BR 1/99 29

Interface
• Inputs

– clk, reset
– low_ld - load LOW value; will be taken from address

bus
– low_high - load HIGH value; will be taken from address

bus
– DIN[7..0] Data bus to RAM
– Addr[5..0] Address bus to RAM.
– Zero - start a zero cycle

• Outputs
– DOUT[7..0]
– Busy - when assert, busy zeroing RAM

BR 1/99 30

What Datapath Elements Do We need?

• Two registers to hold LOW, HIGH value
– Use LPM_DFF or write VHDL model (reg6.vhd)

• Need a 6-bit counter to cycle address lines of RAM
– LPM_COUNTER
– Counter needs to be loaded with LOW value when we

start to zero the RAM

• Need a Comparator to compare Counter value and
HIGH value to see if we are finished

• Need the RAM (use LPM_RAM_DQ)
• Muxes (LPM_MUX or VHDL)

6

BR 1/99 31

Datapath Block Diagram

HIGH Reg

Counter

Compare AEQB

addr

dout

data

Addr[5..0]

Din[7..0]
0

Dout[7..0]

Control lines not shown on datapath diagram

2/1 MuxLOW Reg

BR 1/99 32

What Control Lines do we need from FSM?
(look at each Datapath component)

Registers: Load lines for LOW, HIGH registers driven
externally and NOT under FSM control.

Counter: sload (synchronous load), cnt_en (count enable).
Counter will be configured to only count up.

Mux Selects: When doing ‘zero’ operation, counter will be
driving RAM address lines and RAM input data line will be
zero. The same select line can drive both muxes.

RAM: The WE of the RAM needs to be an OR of the external
WE and a WE that is provided by the FSM.

BR 1/99 33

FSM Interface
Inputs:

Clk, Reset
Zero - kicks off zero operation
Cnt_eq - AEB output from comparator

Outputs:

set_busy, clr_busy -- set/clr output for busy flag (JK-FF)
addr_sel -- mux select line for addr, data muxes
cnt_en -- count enable for counter
ld_cnt -- synchronous load line for counter
zero_we -- WE output of FSM, will be OR’ed with

external WE

BR 1/99 34

What operations do we need for FSM?
• Wait for ZERO command (FSM simply waits for

‘ZERO’ input to be asserted).
• Load the counter with the LOW value
• Write ‘0’ data value to RAM via address specified

by counter, incrementing counter each clock cycle.
Stop writing when HIGH register value equals
counter value.

Three DISTINCT operations, need three STATES in
FSM.

BR 1/99 35

ASM Chart

Zero?

ld_cnt = 1

Addr_sel =1, zero_we = 1,
cnt_en = 1

Cnt_eq?

Clr_Busy = 1
Yes

No

NoYes

S0

S1

S2

Set_Busy = 1

BR 1/99 36

ASM States
• Three States
• State S0 waits for Zero operation. In this state the

external addr, data, we lines are muxed to RAM.
Set busy flag on transition to State S0.

• State S1 loads counter with LOW register value
• State S2 does zero operation. Exit this state with

counter value equals to HIGH register value. On
state exit, clear the busy flag output (conditional
output).
– We will spend HIGH-LOW+1 clocks in this state (clear

LOW to HIGH locations inclusive)

7

BR 1/99 37

LOW Reg

HIGH Reg

Counter

Compare AEQB

addr

dout

data

we

Addr[5..0]

Din[7..0]
0

Dout[7..0]

2/1 Mux

FSM

Q J

K

Busy

Set_BusyClr_Busy Zero_we

we

Cnt_en, ld_cnt

Addr_sel

Zero
Zero Cnt_eq

Datapath + Control
Ld_high

Ld_low

