
1

9/30/2002 BR 1

Bilinear Filtering

Recall that the blend equation was:

Cnew = Ca * f + Cb * (1-f)

Where Ca, Cb were two 8-bit colors, and Cnew was a blend of
these two colors using the blend factor ‘f’ (a 9-bit value).

A similar operation is performed when a texture is mapped onto an
object in 3D graphics, except that 2 blend factors and four colors
are used:

Tnew = (1-v)*(1-u)*T00 + (1-v)*u*T01 + v*(1-u)*T10 + u*v*T11

T00,T01, T01, T11 are 8-bit color values as before, with two 9-bit
factors v, u used to determine Tnew .

9/30/2002 BR 2

Bilinear Filtering (cont)

We will use 9-bits to represent u, v as with the blend equation in
order to represent 1.0 accurately.

Sample calculations:

u=1.0, v=1.0, then Tnew = T11

u=0.0, v=1.0, then Tnew = T10

u=1.0, v=0.0, then Tnew = T01

u=0.0, v=0.0, then Tnew = T00

u = 0.5, v=0.5 then

Tnew = 0.25*T00 + 0.25*T01 + 0.25*T10 +0.25*T11

9/30/2002 BR 3

The Problem

• Implement a datapath + FSM that computes 8 Tnew values
from 32 Txx values stored in a RAM for fixed values of u,
v.

• Will use a minimum resource approach – only 1 multiplier,
1 adder.
– Note that 8 multiplies and 3 adds are required to implement the

bilinear filter equation

• You will be provided with a datapath
– You must schedule the operations on the datapath
– Write an ASM chart that implements the schedule
– Implement the FSM for the datapath and test your design

9/30/2002 BR 4

Sync
Ram

1-f

Mult

1-fu_reg

v_reg mult
reg

F8

Sat
Adder

Acc
Reg Tnew

9
9

9

9
8

8
8

8 8

8

Datapath for Bilinear Filter

9/30/2002 BR 5

How to Compute Tnew?

• The Sync RAM holds the values for Txx

– Each calculation of Tnew requires 4 values from the Sync Ram

– Each 4-tuple stored in order of T00, T01, T10, T11

– Sync Ram has 32 locations, so 8 Tnew calculations

• Each calculation of Txx *u|1-u *v|1-v requires:

– 1st multiply: Txx (from Sync Ram) * v|1-v (use 4/1 mux to
select appropriate v or 1-v). Store result in mult reg.

– 2nd multiply: compute mult reg * u|1-u . Use the mult
feedback path and mult muxes to select proper operands

• The saturating adder + accumulator register is used to accumulate
the result.

9/30/2002 BR 6

Sync
Ram

1-f

Mult

1-fu_reg

v_reg mult
reg

Sat
Adder

Acc
Reg Tnew

9
9

9

9
8

8
8

8 8

8

Step 1: 1-v * T00 (active paths shown in RED)

T00

2

9/30/2002 BR 7

Sync
Ram

1-f

Mult

1-fu_reg

v_reg mult
reg

Sat
Adder

Acc
Reg Tnew

9
9

9

9
8

8
8

8 8

8

Step 2: 1-u * mult_reg (active paths shown in RED)

T00 * (1-v)

9/30/2002 BR 8

Sync
Ram

1-f

Mult

1-fu_reg

v_reg mult
reg

Sat
Adder

Acc
Reg Tnew

9
9

9

9
8

8
8

8 8

8

Step 3: Mult reg = (1-u)(1-v) * T00 , store in Acc reg
Compute (1-v) * T01 (in Sync Ram)

If acc
initially zero,
then can just
add value.

T01

T00 (1-v)(1-u)

9/30/2002 BR 9

Sync
Ram

1-f

Mult

1-fu_reg

v_reg mult
reg

Sat
Adder

Acc
Reg Tnew

9
9

9

9
8

8
8

8 8

8

Step 4: u * mult_reg (active paths shown in RED)

T01 * (1-v)

T00 (1-v)(1-u)

9/30/2002 BR 10

Sync
Ram

1-f

Mult

1-fu_reg

v_reg mult
reg

Sat
Adder

Acc
Reg Tnew

9
9

9

9
8

8
8

8 8

8

Step 5: Mult reg = (u)(1-v) * T01 , add to Acc reg
Compute v* T10 (in Sync Ram)

T10

T00 (1-v)(1-u)
+

T01 (1-v)u

Etc, etc… The rest of the steps are left up to you.

9/30/2002 BR 11

Datapath - bifilt.gdf
• The ZIP archive contains a datapath (bifilt.gdf) that you can

use.
– Cannot change the interface signals (inputs/outputs) or their

functionality
– Cannot change number of multipliers (1) or satadds (1), or size of

sync SRAM (32 locations)
– Make any other changes that you want

• Your datapath + FSM has to compute 8 values of Tnew in
100 clock cycles (this constraint is easy to meet)
– If your number of clock cycles matches or is less than the number of

clock cycles in the golden waveform, then you will get 10 points
added to any test grade.

• You will have to add a FSM to bifilt.gdf to complete the
functionality
– The exact number of states and the sequencing of datapath operations

is up to you.
– You cannot use more than 16 states in your FSM.

9/30/2002 BR 12

Datapath - bifilt.gdf Interface

• Inputs
– Clk, reset : clock and asynchronous reset
– addr[5..0] : drives address bus to SRAM when datapath is not in

operation
– din[8..0] : 9-bit input bus used to initialized u_reg, v_reg, SRAM

contents
– ld_uv : when asserted, then writing to v_reg (addr0 = ‘0’) or u_reg

(addr0 = ‘1’)
– we : when asserted, writing to SRAM using addr, din . Assume

only asserted if datapath if not in operation
– start : when asserted, start bifilt operation starting at SRAM

location 0 and processing all 32 values in SRAM.
• SRAM, u_reg, v_reg are initialized externally to FSM

control.

3

9/30/2002 BR 13

Datapath - bifilt.gdf Interface (cont)

• Outputs
– busy : asserted for duration of bifiltering operation
– o_rdy : asserted when dout bus contains Tnew value
– dout[7..0] : 8-bit output bus for Tnew value

• It is very important that o_rdy only be asserted when dout
bus contains a valid value for Tnew.

• When o_rdy is negated, the value dout is undefined
– Will depend on your particular implementation

9/30/2002 BR 14

Other Comments on bifilt.gdf

• The RAM is synchronous – registered Address, Control,
Data
– You cannot change this because external testbench expects this

operation

• A counter is included in the datapath to drive the address
lines during the bifiltering operation

• The golden waveform is bifilt_gold.scf
– Loads the SRAM with 32 values
– Then tests all of the sample calculations shown on slide #2 plus

one more

9/30/2002 BR 15

Testing Your Design

• Cannot do a waveform compare against the golden
waveform because you may have a different number of
clock cycles

• The tb_bifilt.gdf schematic and tb_bifilt.scf is a testbench
that can be used for checking.

• Includes a counter that will record the number of clock
cycles that busy remains high during bifilter operation

• Includes an XOR-checksum that will checksum all values
on dout when o_rdy is asserted
– you can use this as a quick check – if your checksum matches the

golden checksum then your design is functional

9/30/2002 BR 16

The Next Assignment
• This lab is worth 200 pts and is the first part of a 2-part

series
• In the next part, you will be able to add more

multipliers/satadders to reduce the number of clocks
– Single SRAM is still a constraint
– Interface does not change
– You will have to change the datapath and your FSM
– 2nd part is also worth 200 pts

9/30/2002 BR 17

Due Dates
• Schedule:

– Week 0 (Sept 30): Demo Lab #5, begin working on Lab #6, Part #1
– Week 1 (Oct 7): Must have ASM chart ready for checkoff and FSM

VHDL code written/compiled and debug in datapath in progess. Part
#2 will be assigned at this time.

– Week 2 (Oct 14): Complete checkoff for Part #1 at beginning of lab.
– Week 3 (Oct 21): Must demo Part #2 at the beginning of the lab

period. Begin work on Lab #7.

• You must attend lab session for entire time each week until
Lab #6 (both parts) is completed.
– If you have a laptop, bring it to the lab. If you work on a desktop at

home, then ftp the files to ECE machines. If you do not show up for
lab, or do not remain for the entire time you will lose 30% credit of the
400 total points.

• No late labs accepted for either parts #1 or #2.

9/30/2002 BR 18

A Guaranteed Way to get a 0 for both labs and
perhaps wreck your lab grade

• Don’t do anything the first week.
• Show up for lab in week #1 not even having though about

the first part.
– Now you have only 2 weeks to complete two tough labs

• In week #2, won’t have first part working and
understanding the first part is the key to performing the
second part
– You madly try to finish the 2nd part in week #3 but are clueless, so

at the end of the 3 weeks you have 0/400 pts.
– Total lab points for first 5 labs = 600 pts, so lab average is

600/1000 = 60% (assuming perfect scores on first 5 labs).
– Remember that you must have at least a 60% on all out of class

material to pass the course.

