
Lab 5: Introduction to FSM + Datapaths

Objective
The objective of this lab is to introduce the student to a combined FSM and Datapath
design problem. This lab is worth 150 pts and is a 1-week lab.

All files referred to in this lab are available in this ZIP archive listed on the WWW page
for this lab. To unzip on Unix machines, do 'unzip zipfile.zip'.

Map all designs produced in this lab to the Flex 10K family, EPF10K20RC240-4 (for the
Professional edition of the software, you will need to click on the 'show all speed grades'
button on the device menu in order to get the "-4" speed grade). Use the FAST synthesis
option.

To Do (part 1, FSM Implementation):

You are to complete the design for a Synchronous SRAM that has a block transfer
capability. The interface to the 64x8 XFER SRAM is given below:

INPUTS:

• clk, reset Clock and high true asynchronous reset
• din[7:0] Data input bus for SRAM
• we Write Enable signal
• addr[5:0] Addr Bus
• cmd_we When this line is high, the value on the address bus is loaded into

one the WCNT counter if din[1:0]=”00”, into the FROM counter if
din[1:0]=”01”, or into the TO counter if din[1:0] = “10”.

• xfer control line that starts block transfer

OUTPUTS:

• busy status output that indicates a TRANSFER operation is in progress
• dout[7..0] Data output bus

The xferram.gdf schematic contains the datapath for this design. Your job is to complete
the finite state machine implementation by modifying the file fsm.vhd to implement the
ASM specification shown below:

You should examine the xferram.gdf schematic and trace the connections of the FSM
symbol to all of the datapath components to understand the relationship between the
above signal names and the datapath components that they control. Use the above ASM
to help you understand the transfer operation itself. The transfer operation is
accomplished in states S1 and S2 where S1 reads a word from memory and S2 writes a
word. The number of words copied is specified in the wcnt counter. The beginning
source location is specified in the from counter, and the beginning destination location is
specified in the to counter. The values of the wcnt, to, and from counters must be loaded
via the cmd_we, addr, and din inputs before the transfer operation is started.

State S0 simply waits for xfer assertion.
Addr_sel=00 is a mux select that selects
the normal addr inputs to drive the RAM
address lines.

State S1 reads a word from the RAM using
the from counter address. ce_from
increments the from counter, ce_words
decrements the wcnt counter. Addr_sel=01
is a mux select that selects the from counter
to drive the RAM address lines.

State S2 writes the word read in the
previous state to the RAM using the to
counter address. Fsm_we asserts the
RAM write line. Data_sel=1 is a mux
select that selects the word read from the
previous cycle to be steered to the RAM
data inputs. Addr_sel=10 is a mux select
that selects the to counter to drive the
RAM address lines. The transfer operation
is finished if the wcnt register = 0
(cnt_words = 0). The cel_to output
increments the to counter address.

xfer

busy
ce _from
ce _words

addr_ sel = 01

addr _ sel = 00

busy
ce _to
fsm_we

addr _ sel = 10
data_ sel = 1

cnt _words
= 0 ?

0

1

S0

S1

S2

busy
ce _from
ce _words

addr_ sel = 01

addr _ sel = 00

busy
ce _to
fsm_we

addr _ sel = 10
data_ sel = 1

cnt _words
= 0 ?

0

1

S0 S0

S1 S1

S2 S2

Testing your Design, part 1:

After you have completed your modifications to fsm.vhd, you can test your design via
the xfergold.scf waveform file. This waveform first writes values into the RAM starting
at location 1, then copies 10 words starting at location 5 to location 30H. After the copy
is complete, locations are read starting from 30H. Another copy operation is also
performed later in the test waveform.

To Do (part 2, adding a zero’ing functionality):

Modify both the datapath and finite state machine to support the ZERO operation in
addition to the transfer operation. Add an input pin called ‘zero’ that will zero the
number of words specified by the WCNT register starting at the location specified by the
TO register. There are posted class notes on a RAM with the zero’ing function –you only
have to figure out how to incorporate this same functionality into this design. Add
whatever states and datapath components necessary to the finite state machine and
datapath to support the required functionality.

The zero operation should take one clock cycle per write operation.

Call your new design xferram2.gdf, and your new VHDL file fsm2.vhd so that you do not
overwrite the work you have done in Part 1.

The waveform xfergold2.scf is a golden waveform that tests both the transfer and zeroing
operations.

Assume that the xfer and zero inputs will not be asserted at the same time.

Check Off:

You must get the functionality of both Part #1 and Part #2 verified by the TA.

