
Lab 4: Timing, Pipelining

Objective
Explore some of the timing issues such as register-to-register delay, clock-to-out, etc.
discussed in class. Create a design that means a performance criteria where pipelining
must be used in order to meet the timing requirements.

All files referred to in this lab are available in this ZIP archive listed on the WWW page
for this lab. To unzip on Unix machines, do 'unzip zipfile.zip'.

Map all designs produced in this lab to the Flex 10K family, EPF10K20RC240-4 (for the
Professional edition of the software, you will need to click on the 'show all speed grades'
button on the device menu in order to get the "-4" speed grade). Use the FAST synthesis
option.

This lab is worth 150 points.

Background:

In this lab exercise you will make use of all analysis modes available in the Timing
Analyzer tool. These different analysis modes are available from the Analysis menu once
the timing analysis tool is active. The different analysis modes are:

1. Delay Matrix : this is the mode that you have used in previous exercises. It will
give you combinational delays from input pins to output pins of the mapped
device. These delays are known as pin-to-pin delays. Note that if all outputs are
registered, then the only combinational paths from inputs to outputs is the clock to
each output. Sometimes this type of delay is known as clock-to-out delay.

2. Setup Matrix: this mode reports the setup/hold times for all registered inputs
(inputs that go the data pin of a latch or flip flop).

3. Registered Performance: this examines all of the register to register delay paths,
finds the longest path, and uses the inverse of this value to report a maximum
clock speed for the design. Individual delay paths can be listed from within this
mode.

To Do (part 1, basic timing):
Create a SINGLE schematic from which you can use the Timing Analyzer to measure all
of the following:

1. Minimum register to register delay. This is produced using a minimum
combinational logic block (any 2-input gate) whose inputs and output are
connected to DFFs. The input DFFs should be fed from input pins, and the output
DFF should be tied to an output pin.. Use the “Registered Peformance” mode of
the Timing analyzer. Use “list paths” to show the complete path delay.

2. Minimum clock-to-out delay – use the “Delay Matrix” mode of the timing
analyzer to get this information from the above logic.

3. Minimum setup time – use the “Setup/Hold Matrix” mode of the timing analyzer
to get this information from the above logic.

4. Minimum pin-to-pin delay for combinational logic.Use a simple 2-input gate (any
function) whose inputs/outputs are directly connected to pins to the above
schematic to get this measurement. The inputs and outputs are unregistered.

To Do (part 2, pipelined multiplier):

1. Use the LPM_MULT parameterized module, and configure it to do an 8 bit x 8 bit
multiply with a 8 bit product. Place DFFs on the inputs, DFFs on the outputs, and
determine the maximum clock frequency using the same device, synthesis mode
used in part #1.

2. Use the previous schematic, and change the LPM_MULT parameters such that it
is now pipelined with a latency of '1'. This means that you will need to mark the
'clock' input as 'used', and set the value of LPM_PIPELINE to 1. You will need to
connect the clock input of the multiplier to the clock input. Determine the
maximum clock frequency using the same device, synthesis mode used in part #1.
Repeat this procedure for LPM_PIPELINE =2, and LPM_PIPELINE = 4, and
determine maximum clock frequencies for each.

3. For the schematic with LPM_PIPELINE=4, create a waveform file that exercises
the multiplier and verify that this multiplier is operating correctly with a latency
of 4. Your waveform file MUST feed at least 50 vectors through the multiplier.
DEMONSTRATE this simulation to the TA.

To Do (part 3, pipelined BLEND operation):

Modify the blend implementation that you did in Lab #3 so that it will operate at a clock
rate of at least 50 Mhz. Place DFFs on the inputs, and DFFs on the outputs, and use any
number of pipeline stages necessary to reach 50 Mhz. You must use the Flex 10K family,
device EPF10K20RC240-4. Use the FAST synthesis option. If you are using the
professional edition, you will use the "show all speed grades" in order to get the "-4"
speed grade. You CANNOT use a speed grade other than "-4".

Call your design "pblend". Look at the testbench schematic (tbpblend.gdf) included in
the ZIP archive to get the required port names. It is your "pblend" that must meet the
clock rate specification above, NOT the testbench. This means that to check your clock
rate specification, do a ‘set current project’ to your pblend schematic, compile, and run
the timing analyzer. If you include the testbench, then your design may be slower than
necessary. The testbench schematic is included only to make sure that your design isstill
functional after you add pipeline stages.

Other Files:
The ZIP archive contains other files that you may or may not find interesting:

• onemalt.gdf - this implements the “1-F” function using LPMs. You might want
to use this instead of the VHDL that you did for Lab #3 because the Altera
synthesis software can sometimes produce faster logic from LPMs than from
VHDL.

• dff8.vhd, dff9.vhd – 8 and 9 bit registers specified in VHDL. You could also
use the LPM_DFF

Testing the Design:
You can use the schematic tbblend.gdf as the testbench. This a design problem, which
means that there are multiple solutions that will meet the specifications. I have provided
'golden' waveforms files that have differing amounts of latency – the lat15gold.scf
waveform file below gives the maximum amount of latency that I will allow.

1. lat1gold.scf - output latency = 1 (testbench)
2. lat2gold.scf - output latency = 2 (testbench)
3. lat3gold.scf - output latency = 3 (testbench)
4. lat4gold.scf - output latency = 4 (testbench)
5. lat5gold.scf - output latency = 5 (testbench)
6. lat6gold.scf - output latency = 6 (testbench)
7. lat7gold.scf - output latency = 7 (testbench)
8. lat8gold.scf - output latency = 8 (testbench)
9. lat9gold.scf - output latency = 9 (testbench)
10. l10gold.scf - output latency = 10 (testbench)
11. l11gold.scf - output latency = 11 (testbench)
12. l12gold.scf - output latency = 12 (testbench)
13. l13gold.scf - output latency = 13 (testbench)
14. lat14gold.scf - output latency=14 (testbench)
15. lat15gold.scf - output latency=15 (testbench)

When you are checking your design, particular trouble spots might be where the F value
transitions from 0 to a non-zero value or from 1.0 to a value not equal to 1.0. One cause
for failure at these junctures would be if the amount of latency in the paths that bypass
the multiplier do not equal to the latency within the multiplier. Be sure that the select line
going to the mux on the output the multiplier has the same amount of latency as the data
paths to the mux.

Checkoff:
You must DEMONSTRATE that your design meets the timing specification using speed
grade "-4" and also produces the correct output vectors.

Report

You must hand in plots of all schematics, and report the timings from parts 1,2, and the
final maximum frequency in part 3. Hand in a partial plot of the multiplier simulation
and show the latency between a set of input values and the correct output value.
EXPLAIN how you modified the original blend implementation to include pipelining.

