
Lab2: Unsigned/Signed Saturating Adder

Objective
The objective of this lab is to introduce the student to Altera LPMs and combinational
logic via VHDL.

To Do (part 1):
All files referred to in this lab are available in this ZIP archive listed on the WWW page
for this lab. To unzip on Unix machines, do 'unzip zipfile.zip'.

The schematic below (satadd.gdf) implements an 8-bit saturating adder for unsigned
integers. If the carry out of the adder block is '1' indicating unsigned overflow, then the
output will be clamped to 255 (0xFF). Saturating arithmetic is a common feature in 3D
graphics and digital signal processing applications.

You are to modify this design such that it also supports saturating addition for signed
integers (2's complement). An input called signed will determine if the addition is for
signed integers (signed = '1') or unsigned (signed = '0'). Look at the lecture on fixed
point arithmetic to determine the extra logic that is needed. You must implement at least
some of your logic in VHDL. You can implement all of the extra logic in VHDL if you
desire. You must call your new design sataddmx.gdf (just save the satadd.gdf schematic
as a new schematic and rename it before editing it).

You can only use ONE adder in your design.

Testing Your Design
The schematic below (tbsatmx.gdf) is to be used to test your design.This testbench hooks
up an 8-bit wide DFF to the output of sataddmx in order to register the output. The
waveform file tbsatmx.scf can be used to test the design. The waveform file
tbsatmxgold.scf is the 'golden' file (correct expected results) that can be used to check
your results. Use the FILE -> COMPARE command in the waveform editor to compare
your tbsatmx.scf waveform against the tbsatmxgold.scf waveform. When comparing
waveforms, red color indicates a match, blue indicates a mismatch. There may be small
differences due to combinational delays between your waveform and the golden
waveform but the 8-bit value should be the same (the differences will be due to the fact
that the programmable device used to produce the golden waveform may not be the same
device you use for producing your waveform and thus the output delay of the DFF will be
different between the two devices).

TO DO (part 2)
After verifying that your sataddmx design works correctly inside of the testbench, map
your sataddmx design (NOT the tbsatmx design) to the Flex 10K family,
EPF10K20RC240 device (use any speed grade - the dash numbers indicate speed grade)
and the MAX 7000 family, 'auto device', (the 'auto device' will fit your design into the
smallest available device from the MAX 7000 family). To assign a particular device, use
the 'Assign -> Device' menu while in the schematic editor. Using the report file
(sataddmx.rpt) that is produced after mapping, give the total number of logic cells (LCs)
used in each technology, the %utilization of the device, and the device that the design
was mapped to.Use the timing analyzer (Max+plusII -> Timing Analyzer) and report the
longest path from input to output for each implementation technology (the pairs of times
displayed is the shortest/longest paths for the given pin-to-pin delay). Be sure that you
use delays from the Delay Matrix (pin to pin delays) - if the timing analyzer does not
display 'Delay Matrix' then use the Analysis menu to choose Delay Matrix. If the Delay

Matrix has a clock pin, then you are analyzing the delays for the tbsataddmx.gdf
schematic (testbench), not the sataddmx.gdf schematic. Open the sataddmx.gdf
schematic, use the "File->Set Project to Current File" menu choice, and recompile your
design using one of the specified devices. Write a short explanation in the lab report as to
which device family is faster (Flex 10K versus MAX 7000) and why.

To Turn In
A printout of your modified schematic and any VHDL files that you wrote, and also the
information requested in Part 2.

Check Off
You must DEMONSTRATE you sataddmx design to the TA by showing that the
waveforms produced using your sataddmx design within the testbench matches the
golden result.

Questions:
Answer these in your post lab writeup.

1. (2 pts ea)Give the decimal value for the 8-bit binary number “11001000”
interpreted as:

a. Unsigned integer (8.0 format)
b. Two’s complement integer (8.0) format
c. Unsigned number, (0.8 format)
d. Unsigned number (4.4 format)

2. (2 pts ea) Give the result of the following sums (the numbers are in base 16)

a. 80h + 01h (normal addition)
b. 80h + 01h (signed saturating addition)
c. 80h + 01h (unsigned saturating addition)
d. 7Fh + 01h (normal addition)
e. 7Fh + 01h (signed saturating addition)
f. 7Fh + 01h (unsigned saturating addition)
g. F0h + 20h (normal addition)
h. F0h + 20h (signed saturating addition)
i. F0h + 20h (unsigned saturating addition)

3. (5 pts) Why is saturating addition useful?

4. (8 pts) What is the basic programmable element in an Altera FLEX 10K FPGA?
Is the FLEX10k volatile or non-volatile?

5. (8 pts)What is the basic programmable element in an Altera Max 7000 device? Is

the Max 7000 volatile or non-volatile?

Altera LPMs (Library of Parameterized Modules)

The satadd.gdf schematic uses Altera parameterized modules. These modules implement
various functions such as add, multiply, muxes, counters, registers, etc. and offer various
parameters that allow customization of these components. Most of the LPMs also allow
you to select optional input/output pins for the LPMs which add/subtract functionality.
To edit the ports/parameters list of an LPM, select the LPM, right click, and choose 'Edit
Ports/Parameters'. If you are unclear about what a parameter does, there is a help button
in the upper right corner of the 'Edit Ports/Parameters' dialog box that will give you
detailed help on the LPM.

LPM_ADD_SUB

The LPM_ADD_SUB module is used to implement an adder or subtractor or a block that
does both. In the satadd.gdf schematic, the add_sub control line is marked as unused in
the 'Edit Ports/Parameters' list, so this block only does an add function. In addition, the
LPM_WIDTH parameter is set to '8' so that it implements an 8-bit addition.

LPM_MUX

The LPM_MUX parameterized mux is straightforward. The parameters control the width
of the inputs (LPM_WIDTH, 8 in this case) and the number of inputs (LPM_SIZE, 2 in
this case).

Multi-dimensional busses in Maxplus

The parameterized modules make extensive use of multi-dimensional busses. A multi-
dimensional bus can be thought of as a group of busses which are all the same width.
Suppose I need two 8-bit busses. I could declare two separate busses:

A[7..0] B[7..0]

or one multi-dimensional bus:

DATA[1..0][7..0]

I could refer to each of the 8-bit busses in the multi-dimensional bus via the names:

DATA[1][7..0]
DATA[0][7..0]

In the LPM_MUX module, if you set LPM_WIDTH=8, LPM_SIZE=4 (4 inputs, each 8
bits wide), you will get a symbol whose input bus needs to be labeled as:

DATA[3..0][7..0]

Connecting Single Dimensional Busses to Multi-Dimensional Busses
You may often find it necessary to connect a single dimensional bus to a multi-
dimensional bus:

A[7..0] => DATA[1][7..0]
B[7..0] => DATA[0][7..0]

One way to do this is by using buffers to connect the two busses. For convenience
purposes, I created a VHDL file called buf8 that I use for connecting an 8-bit 1D bus to
an 8-bit 2D bus. Example usage of this is shown below:

You can also use labeling to connect two busses to a multi-dimensional bus by putting
commas between the bus names on the multidimensional bus:

 a[3..0] → data[1][3..0]
b[3..0] → data[0][3..0]

Common Schematic Editing Problems
Here is a list of some common schematic editing problems. When fixing problems, try to
fix the first problem and recompile; multiple error messages may be due to the same
problem.

1. "Error: Input pinstub/port somepin is unconnected and has no default value" -- To
locate the problem component, double click on the error message and the
component will be highlighted.You may forgotten to connect the pin, or
misspelled the label of the net that is connected to the pin. Sometimes, it will look
like a net is connected to a pin but it is not actually connected. Try clicking on the
net and moving it around - if it is connected, then the net will 'rubberband' and
remain connected.

2. "Error: node missing source :"pinname"[ID:compnum:pinname]". The pinname is
the name of the pin, the compnum is the number of the component (the
component number is displayed in the lower left hand corner of the component -
the BUF8 picture above has a component number of '16'). This error happens if
there is actually a net connected to an input pin, but the net does not connect to an
output pin of some other component. The most common cause of this problem is
that you have either mislabeled the output input net name or the input pin net
name.

3. "Error: Illegal node or pin name :"pinname"[ID:compnum:pinname]". This
usually happens if an illegal syntax has been used for a bus name, such as A[7:0]
or A[7.0], or A(7..0), etc. A bus name uses two periods to seperate the high/low
bus indexes, and brackets around the bus indexes (A[7..0]).

4. "Error: Width mismatch in pinstub :"pinname"[ID:compnum:pinname]". This is
due to a mismatch between the label on a bus and the pin that it is connecting to.
For example, if a bus has the label A[8..0] (9-bits wide), and the pin has the label
A[7..0] (8 bits wide), this error will be generated. This also happens if you use a
single dimensional bus label where a multi-dimensional bus label is required, or
vice-versa.

5. "Error: Tri-state node must be driven by a TRI buffer, but is driven by a primitive
:"pinname"[ID:compnum:pinname]". This happens when you connect mistakenly
connect two outputs together by physical connection or by using the same net
name (you can only do this if you are using a tri-state buffer, and the FLEX
devices we are mapping to do not implement tri-state buffers).

These are not all of the error messages due to schematic errors, but are definitely the most
common ones.

Common VHDL Problems

The number of possible syntax problems in VHDL are too numerous to list. The best
advice is to try to solve the first problem and then recompiling. Also, when you edit a file
via the "Max+plus II -> Text Editor", you can use the "Templates-> VHDL Template"
menu to insert various templates for VHDL structures. This can save you from many
common syntax problems - I would highly suggest that you use this.

Also, when you save a file, it must have a .vhd file extension!!!!! The default file
extension when you open a file in the Max Plus text editor is not .vhd, -- you must
explicitly choose this file extension when you save the file.If you use any other file
extension, the VHDL compiler will not be used on this file and you will spend an infinite
amount of time trying to fix strange error messages that have nothing to do with
VHDL!!! Also, the file name must match the entity name! If you use an entity name of
'mymodel', then the file should be saved as 'mymodel.vhd'.

