EE 3714 Test \#3 - Fall 1999 Solutions

1. (5 pts) Identify the following device. What values do the inputs have to be for the outputs to have the following values $\mathrm{Y} 0=0, \mathrm{Y} 1=0, \mathrm{Y} 2=1, \mathrm{Y} 3=0$.

2 to 4 Decoder with Enable
Need $S 1=1, S 0=0, E N=1$.
2. (8 pts)Assume that the initial state device shown below is a ' 0 '. Draw a timing diagram that will cause the state of the device to be changed to ' 1 '.

SR latch with low true inputs
3. (8 pts) Complete the timing diagram below for the Q output of the device that is shown.

4. (8 pts) Complete the timing diagram below for the Q output of the device that is shown.

Rising edge triggered DFF
5. (8 pts) Complete the timing diagram below for the Q output of the device that is shown.

Falling edge triggered JK.
6. For a flip-flop of your choosing (D, J-K, T) , draw a timing diagram and illustrate setup and hold time constraints. SEE NOTES ON SETUP/HOLD for DFF.
7. $(5 \mathrm{pts})$ What is the clock period of a $50 \mathrm{Mhz} \operatorname{clock}\left(1 \mathrm{Mhz}=10^{6}\right)$

$$
\text { Period }=1 / \text { Frequency } \quad=1 /\left(50 \times 10^{6}=0.02 \times 10^{-6}=20 \times 10^{-9}=20 \mathrm{~ns}\right.
$$

8. (5 pts) What is the value of $\$ \mathrm{~A} 3$ shifted to the right by one position with the serial input bit $=$ ' 1 '?
$\$ A 3=\quad 10100011$
Right Shifted value: $\begin{array}{llllllll}1 & 1 & 0 & 1 & 0 & 0 & 0 & 1\end{array}=\$$ D1
9. (5 pts) How is an asynchronous input different from a synchronous input?

Asynchronous inputs are independent of clock, synchronous inputs effect circuit only on active clock edge.
10. Draw the schematic for a 1-bit register. The inputs are CLK, D,LD. The output is Q . The LD input ais high true. SEE NOTES.
11. Draw the diagram of a rising edge trigerred D-FF using D Latches. SEE NOTES (the inverted clock goes to the FIRST D latch, the master latch).
12. (10 pts) Draw a schematic for a 3 - bit counter.... etc.

SEE NOTES.
13. (10 pts) Draw the schematic of a 4-1 mux using Tri-state buffers. You can use an decoder block in your design, and you do not have to show the internal details of the decoder.

SEE NOTES.

