EE 3714 Test \#2 Solutions - Fall 2001 - Reese
Student ID Number: \qquad (no names please)

Work all problems.

1. (6 pts) Plot the following function on a K-Map.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{CD}+\mathrm{AC}^{\prime}+\mathrm{BCD}^{\prime}$

2. (6 pts) Minimize the following K-map to produce a minimal SOP form.

3. (6 pts) Simplify the following K-map to get a minimal POS form.

4. (6 pts) On the following map, identify the following (give the product term) for a minimal SOP equation:
a. ESSENTIAL Prime Implicant $C^{\prime} D$ or $A C$
b. NON-ESSENTIAL Prime Implicant. $A D$

Remember that a PI cannot be combined with another group, and a non-essential PI does not have to be included in the minimal equation. $A D$ is a non-enssential PI because all of its ' 1 's are covered by other PI groupings.

5. (6 pts) I would like to implement the functions ' F ', ' G ' below in one or more memory devices. Note that F, G share some variables (inputs 'A', 'B' are common to both F, G).

$$
\begin{aligned}
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}) & =\mathrm{AB}+\mathrm{CA}+\mathrm{CB} \\
\mathrm{G}(\mathrm{~A}, \mathrm{~B}, \mathrm{D}, \mathrm{E}) & =\mathrm{A}+\mathrm{B}+\mathrm{D}^{\prime} \mathrm{E}^{\prime}
\end{aligned}
$$

a. What sized memory ($\mathrm{K} \times \mathrm{M}$) would be needed to implement both F and G in ONE MEMORY chip? $32 \times 2\left(2^{5} \times 2\right)$--- There are 5 common variables, 2 outputs.
b. What sized memory (KxM) would be needed to implement only equation ' F '?
$8 \times 1\left(2^{3} \times 1\right)$ There are 3 variables, 1 output.
6. (10 pts) Fill in the blanks using terms from the following list:

INEFFICIENT, Volatile, 1, JEDEC, Non-Volatile, 0, VHDL, tri-state buffer, EFFICIENT, PLD, PRODUCT TERM, Memory, Intact, Fuse, POS, SOP, Non-Intact
i) When all fuses are blown, the value of a product term in a PAL is ONE (a blown fuse leaves its input as a ' 1 'value, all ' 1 's to a product term produces a ' 1 ').
ii) $A_{_} \boldsymbol{P L D} \boldsymbol{D}_{-}$is efficient at implementing wide Boolean functions and multiple functions of independent variables.
iii) A programmable logic device is \qquad non-volatile \qquad if it retains its programming on power down.
iv) A \qquad tri-state buffer \qquad has three output states: ' 1 ', '0' and high impedance.
v) __ VHDL___ is a language used for specifying boolean equations which can be mapped to programmable logic.
7. (6 pts) Show via a schematic how the $2 / 1$ mux equation $Y=I 0 S^{\prime}+I 1 S$ can be implemented using tri-state buffers.

8. (8 pts) The symbol on the left is for a one-bit $2 / 1$ mux. The symbol on the right is for a one bit $4 / 1$ mux. Draw a schematic showing how to create the $4 / 1$ mux using $2 / 1$ muxes.

9. (6 pts) The symbol below is for a 2 to 4 decoder. Show the gating necessary to implement the Y2 output.

$\mathbf{Y} 2=\mathbf{S 1} \mathbf{S 0}{ }^{\prime}$
$Y 2=1$ when $S=10$
10. (8 pts) For the device shown below, fill in the VOLTAGE truth table for the inputs. Use 'L', 'H' for level inputs. For a rising edge needed on an input pin, use " $L \rightarrow H$ ", for a falling edge needed use " $\mathrm{H} \rightarrow \mathrm{L}$ ".

Output result	Inputs			
	C	D	S	R
Force output to a L regardless of clock	X	X	H	L
Force output to a H regardless of clock	X	X	L	H
Set output to a H on next active clock edge	$\mathrm{L} \rightarrow \mathrm{H}$	H	H	H
Set output to a L on next active clock edge	$\mathrm{L} \rightarrow \mathrm{H}$	L	H	H

Set, Reset are NEVER don't care inputs. They always affect the DFF.
11. (6 pts) Complete the timing diagram below for the device shown:

12. (6 pts) Draw the schematic for a rising edge triggered DFF using two D-latches.

13. (6 pts) Draw the gate schematic for a Set/Reset latch with LOW TRUE INPUTS.

14. (5 pts) A clock has a period of $40 \mathrm{~ns}\left(1 \mathrm{~ns}=10^{-9} \mathrm{~s}\right)$. What is the clock frequency in Mhz (1 Mhz $=10^{6} \mathrm{~Hz}$)

Clock freq $=1 /\left(40 \times 10^{-9}\right)=0.025 \times 10^{9}=25 \times 10^{6}=25 \mathrm{MHz}$
15. (3 pts) For the device shown in problem 10 , what input(s) have a setup/hold associated with it?

Only input D has a setup and hold time associated with it. Input D has satisfy setup/hold times in relation to the rising clock edge in order for correct operation.
16. (6 pts) For the device shown in problem 10, what input(s) have a propagation delay associated with them?

Inputs C, S, R have propagation delays - changes on these inputs can cause the output to change.

