EE 3714 Test \#1 Solutions- Spring 2000 - Reese

1. (5 pts) What is the minum number of bits that I need if I want to encode 33 distinct items? 6 bits $\left(2^{6}=64\right)$
2. ( 5 pts ) What range of signed integers can I represent using 4 bits and 2's complement representation? -8 to 7
3. ( 5 pts ) The following 8 -bit hex number $\$ E 7$ represents a signed integer in 2 's complement format.

What is its decimal value? $\$ E 7$ is a negative number, complement \& Add one, get $\$ 19$. Convert to decimal, get 25.
4. ( 5 pts ) The following 8-bit hex number $\$ 3 \mathrm{~A}$ represents a signed integer in signed magnitude format. What is its decimal value? This is a positive number, convert to decimal: 58.
5. ( 5 pts ) Convert the following number decimal -21 (negative twenty-one) to an 8 -bit representation using one's complement format. Convert magnitude to hex: \$15. Complement, get: \$EA.
6. ( 5 pts ) How do you detect overflow when adding 2 's complement number?

Add two negative numbers, get positive. Add two positive numbers, get negative.
7. ( 5 pts ) How do you detect overflow when adding unsigned numbers?

Carry out of most significant bit position.
8. ( 5 pts) Convert the following expression to a POS form:

$$
A C+D(B+E)=(A C+D)(A C+B+E)=(A+C)(A+D)(A+B+E)(C+B+E)
$$

9. ( 5 pts$)$ Write the truth table for the following function: $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=(\mathrm{AB})^{\prime}+\mathrm{C}$

| A | B | C | $(\mathrm{AB})^{\prime}$ | $(\mathrm{AB})^{\prime}+\mathrm{C}$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 1 |

10. ( 5 pts ) Simplify the following equation to as few terms as possible
AB' + AB'CD + ABC'D'

Hint: the relation $X+X^{\prime} Y=X+Y$ is useful. Also final answer has two product terms, one term with 2 variables, the other term with 3 variables.

$$
\begin{aligned}
& \mathrm{AB}^{\prime}(1+\mathrm{CD})+\mathrm{ABC} \mathrm{D}^{\prime} \\
& \mathrm{AB}^{\prime}+\mathrm{ABC} \mathrm{D}^{\prime} \\
& \mathrm{A}\left(\mathrm{~B}^{\prime}+\mathrm{BC}^{\prime} \mathrm{D}^{\prime}\right) \\
& \mathrm{A}\left(\mathrm{~B}^{\prime}+\mathrm{C}^{\prime} \mathrm{D}^{\prime}\right) \\
& \mathrm{AB}^{\prime}+\mathrm{AC}^{\prime} \mathrm{D}^{\prime}
\end{aligned}
$$

11. (10 pts) Complete the timing diagram for the A', Y signals. Each gate has a delay of 1 ns . Complete the diagram out to 10 ns .

XOR


12. (5 pts) Draw the CMOS transistor diagram for a 2 input NOR gate. SEE NOTES.
13. (5 pts) Used DeMorgan's Law on the following equation until the NOT operator is only applied to single variables:

$$
\begin{aligned}
\left(\mathrm{X}^{\prime} \mathrm{Y}+\mathrm{A}^{\prime}(\mathrm{B}+\mathrm{C})\right)^{\prime} & =\left(\mathrm{X}^{\prime} \mathrm{Y}\right)^{\prime}\left(\mathrm{A}^{\prime}(\mathrm{B}+\mathrm{C})\right)^{\prime} \\
& =\left(\mathrm{X}+\mathrm{Y}^{\prime}\right)\left(\left(\mathrm{A}^{\prime}\right)^{\prime}+(\mathrm{B}+\mathrm{C})^{\prime}\right) \\
& =\left(\mathrm{X}+\mathrm{Y}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime} \mathrm{C}^{\prime}\right)
\end{aligned}
$$

14. ( 5 pts ) In the circuit shown below, what is the MAXIMUM path delay if the propagation delay of the inverters is 1 ns , the AND gate propagation delay is 2 ns , and the OR gate propagation delay is 5 ns ?

## 19 ns, SEE FIGURE 2.14(b) pg 38 in textbook.

15. (5 pts) Which two level gate forms are used to directly implement boolean equations in POS equations? (hint: You need to list '2' two level gates forms) $O R-A N D, N O R-N O R$
16. ( 5 pts ) Which two level gate forms are used to directly implement boolean equations in SOP equations? (hint: You need to list '2' two level gates forms) AND-OR, NAND-NAND
17. (5 pts) Explain the terms 'wafer' and 'die' in terms of integrated circuit manufacturing.

Wafer is a thin, round $\left(6-8^{\prime \prime}\right)$ piece of silicon that is processed thru the fabrication line. Each Wafer is divided into rectangular areas called 'die' -each die contains the same integrated circuit.
18. ( 5 pts) Explain the terms 'fanout' and 'fanin'.

Fanin - number of gate inputs, Fanout - number of inputs that a particular output is connected to.
19. ( 5 pts ) Convert the following expression to a SOP form that has only two product terms.

$$
\begin{aligned}
& \left(\mathrm{A}+\mathrm{BCD} \mathrm{D}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{D}\right) \\
& \mathrm{AA} \mathrm{~A}^{\prime}+\mathrm{AD}+\mathrm{A}^{\prime} \mathrm{BCD}^{\prime}+\mathrm{BCDD} \\
& 0+\mathrm{AD}+\mathrm{A}^{\prime} \mathrm{BCD}^{\prime}+0 \\
& \mathrm{AD}+\mathrm{A}^{\prime} \mathrm{BCD}^{\prime}
\end{aligned}
$$

