1. (6 pts) What is the minum number of bits that I need if I want to encode 24 distinct items? 5 bits can encode 32 items, 4 bits can encode 16 items, so correct answer is 5 bits.
2. (6 pts) What range of signed integers can I represent using 6 bits and 2's complement representation? -32 to +31 .
3. (6 pts) The following 8-bit hex number $\$ \mathrm{D} 3$ represents a signed integer in 2's complement format. What is its decimal value? The MSB is a ' 1 ', so number will be negative. $\$ D 3=11010011$. Take 2's complement for magnitude, get $00101101=\$ 2 D=2 * 16+13=45$. Answer is -45 .
4. (6 pts) The following 8 -bit hex number $\$ 21$ represents a signed integer in signed magnitude format. What is its decimal value? MSB is 0 , so number is positive. To get magnitude, just covert to decimal. $\$ 21=2 * 16+1=33$. Answer is +33 .
5. (6 pts) Convert the following number decimal -15 (negative fifteen) to an 8 -bit representation using one's complement format. 15 converted to 8 bits is $=\$ 0 F=\% 00001111$. Takes ones complement to get negative representation, so answer is $\% 11110000=\$ F 0$.
6. (6 pts) Write a sum of two 8-bit hex numbers in 2's complement format that will produce a signed overflow. $\$ 70+\$ 10=\$ 80$. Positive + Positive $=$ Negative .
7. (6 pts) Write a sum of two 8 -bit hex numbers representing unsigned numbers that will produce a unsigned overflow. $\$ F F+\$ 01=\$ 00 . \quad 255+1=256$. The value 256 is outside the range 0 to 255.
8. (6 pts) Convert the following expression to a POS form: $\mathrm{PQ}+\mathrm{XY}$ Use distributive law $\quad P Q+X Y=(P Q+X)(P Q+Y)=(P+X)(Q+X)(P+Y)(Q+Y)$
9. (6 pts) Write the truth table for the following function: $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=(\mathrm{A}$ xor B$)$ and C

A	B	C	A xor B	(A xor B) and C
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

10. (6 pts) Simplify the following equation to as few as terms as possible.

$$
\left(\mathrm{A}+(\mathrm{BC})^{\prime}\right)(\mathrm{A}+\mathrm{BC})
$$

Use the property that $\left(A+X^{\prime}\right)(A+X)=A . \quad$ Let $X=B C$. Then answer is A.
11. (6 pts) Complete the timing diagram for the Y output.

A

B

12. (6 pts) Draw the CMOS transistor diagram for a 2 input NAND gate.

13. (6 pts) Convert the following to a POS form (Hint: use DeMorgan's Law):

$$
\left(X+Y^{\prime} Z\right)^{\prime}=\left(X^{\prime}\right)\left(Y^{\prime} Z\right)^{\prime}=X^{\prime}\left(Y+Z^{\prime}\right)
$$

14. (6 pts) In the circuit labeled FIGURE 1, what is the MAXIMUM path delay if the propagation delay of the inverters is 1 ns , the AND gate propagation delay is 2 ns , and the OR gate propagation delay is 5 ns ?

See Figure 2.15 (c) in the textbook.
The maximum path delay is through the lower AND gate to the output:

$$
\mathrm{AND}(2 \mathrm{~ns})+\mathrm{OR}(5 \mathrm{~ns})+\mathrm{OR}(5 \mathrm{~ns})+\mathrm{AND}(2)=14 \mathrm{~ns}
$$

The paths through the upper AND gate is:
AND (2ns) + OR (5ns) + NOT (1 ns) + AND (2ns) + AND (2 ns) $=12 \mathrm{~ns}$
15. (10 pts) For the statements below, fill in the blank using words from the list below:

WAFER, DIE, PACKAGE, VIH, VIL, VOH, VOL, TTL, NMOS, PMOS, CMOS, NAND-NAND, NOR-NOR
a. __ PACKAGE__ Used to provide external connections of the inputs, outputs of the chip, placed on a printed circuit board.
b. ____CMOS \qquad The process technology in which NMOS, PMOS transistors are created; the dominant process techology for making designs with large numbers of logic gates.
c. ___ VOH_{\ldots} The minimum OUTPUT VOLTAGE that is considered to be a HIGH voltage.
d. ___ NOR-NOR__ This two level form can implement POS equations assuming dual rail inputs.
e. \qquad WAFER \qquad Processed in batches of 25 on the fabrication line; is circular and is usually either $6^{\prime \prime}$ or $8^{\prime \prime}$ in diameter, made of silcon.
16. (6 pts) Give me an example of a boolean equation that can be simplified using the consensus theorem. Give me the equation BEFORE and AFTER simplification via the consensus theorem.
$X^{\prime} Y+X Z+Y Z=X^{\prime} Y+X Z$

