

- Tplh -- time between a change in an input and a low to high change on the output. Measured from 50% point on input signal to 50% point on the output signal. The 'lh' part (low to high) refers to OUTPUT change, NOT input change
- Tphl -- time between a change in an input and a high to low change on the output. Measured from 50% point on input signal to 50% point on the output signal. The 'hl' part (high to low) refers to OUTPUT change, NOT input change

BR 1/99

27

Time Units

1 s = 1 sec $1 ms = 1 millisecond = .001 sec = 1 x 10^{-3} s$ $1 us = 1 microsecond = .000001 sec = 1 x 10^{-6} s$ $1 ns = 1 nansecond = .000000001 sec = 1 x 10^{-9} s$ $1 ps = 1 picosecond = .0000000001 sec = 1 x 10^{-12} s$

The gate delays for gates used in lab are a few nanoseconds. Gate delays on state-of-the-art high density logic devices are in the 10's to low hundreds of picoseconds.

BR 1/99

29

A Glitch!!

- Because the change in A was seen immediately at one input of the AND gate, but was delayed by the inverter on the other input, a **GLITCH** was caused at the output
- Glitches are caused by unequal path delays in a circuit
- Glitches are usually unavoidable, simply have to wait for 'settling time' before using output of circuit

- Settling time is usually the worst case delay path

BR 1/99

31

Max	imum Ratings	
Maximum ratings are abso device without DAMAGE operating conditions.	olute Vdd, Input voltag	e ratings for mended
absolute maximum ratings over operatin Supply_voltage, V _{CC} (see Note 1) Input voltage: '00, 'S00	ng free-air temperature range (unless otherwise noted)
Operating free-air temperature range:	SN54'	-55°C to 125°C 0°C to 70°C
Storage temperature range		−65°C to 150°C
NOTE 1. Voltage values are with respect to network	around terminal.	
	BR 1/99	35

Recommended Operating	g C	on	diti	ons	5		
The input, Vdd voltages for which the tin	ning	g, po	wer	spe	cs a	re	
valid for.							
recommended operating conditions							
		SN5400			SN/400	MAX	UNIT
	MIN	NOM	MAX	MIN 4 75	NOM	5 25	
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	0.20	v
VIH High-level input voltage			0.8	2		0.8	v
			- 0.4			- 0.4	mA
			16			16	mA
	- 55		125	0		70	°c
V_{IH} - minimum input voltage that will V_{IL} - maximum input voltage that will V_{IL} - maximum input voltage that will V_{IL}	be re	ecog	gnize gnize	d as ed as	s a '] s a 'j	H'. L'. ³⁶	

X MIN .5 2.4 .4 1	TYP‡ 3.4 0.2	MAX - 1.5	
.5 2.4 .4 1	3.4	- 1.5	V
2.4 .4 1	3.4 0.2		
.4	0.2		V
1		0.4	V
		1	mA
40		40	μA
.6		- 1.6	mA
55 - 18		- 55	mA
8	4	8	mA
22	12	22	mA
	i5 – 18 8 22	15 -18 8 4 22 12	15 - 18 - 55 8 4 8 22 12 22

		Prop	agation De	elay				
Switching char	FROM	CC = 5 V, TA = то (оитрит)	25°C (see note 2) TEST CON	DITIONS	MIN	ТҮР	мах	UNIT
^t PLH	A or B	Y	R _L = 400 Ω,	CL = 15 pF		11	22	ns
Both Highe device	Vdd and r Vdd, fa e, excessi	Temperatu ster switch we power	are will affect ning (can't go consumption).	propagation too high, w	delay	y. mag	e	
Lowe	r Temp, f	aster swite	BR 1/99				40	

		TEST CONDITIONS			25 ⁰ C			-40 ⁰ C TO 85 ⁰ C		-55°C TO 125°C			
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	A) V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS	
HC TYPES													
High Level Input	VIH		-	2	1.5	-	-	1.5	-	1.5	-	V	
Voltage					4.5	3.15	-	-	3.15	-	3.15	-	V
						6	4.2	-	-	4.2	-	4.2	-
Low Level Input Voltage	VIL	-	-	2	-	-	0.5	-	0.5	-	0.5	V	
				4.5	-	-	1.35	-	1.35	-	1.35	V	
				6	-	-	1.8		1.8	-	1.8	V	
High Level Output Voltage CMOS Loads	V _{OH}	V _{IH} or V _{IL}	-0.02	2	1.9	-	-	1.9	-	1.9	-	V	
			-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V	
			-0.02	6	5.9	-	-	5.9	-	5.9	-	V	
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	-4	4.5			0.1	-	0.1	-	0.1	V	
Input Leakage Current	ų	V _{CC} and GND	4	5.5	-		±0.1	-	±1	-	±1	μA	
Quiescent Device Current	Icc	V _{CC} or GND	0	5.5	-	-	2	-	20	-	40	μΑ	

		,	,			, -					
Switching Specifications	Input t _r , t _f = 6	ns (Continued)	Vee		25 ⁰ C		-40°C TO 85°C		-55°C T	0 125°C	
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Transition Times (Figure 1)	t _{TLH} , t _{THL}	C _L = 50pF	2	-	-	75	-	95	18	110	ns
			4.5		-	15	-	19	-	22	ns
			6		-	13	-	16	-	19	ns
Input Capacitance	CI	-	-		-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 3, 4)	C _{PD}	-	5	-	25	-	-	-	-	-	pF
HCT TYPES									•		
Propagation Delay, Input to Output (Figure 2)	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	-	20	-	25	-	30	ns
Propagation Delay, Data Input to Output Y	t _{PLH} , t _{PHL}	C _L = 15pF	5	•	8	-	-	-	-	-	pF
Transition Times (Figure 2)	t _{TLH} , t _{THL}	$C_L = 50 pF$	4.5		-	15	-	19	-	22	ns
Input Capacitance	CI		-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 3, 4)	C _{PD}	-	5	-	25	-	-	-	-	-	pF

<text><text><text><text><text>

Other CMOS/TTL Differences, Facts

CMOS gates can run at a wide range of voltages. Note that the CMOS datasheet had specs for Vcc = 2V, 4.5 V, 6 V.

TTL gates tolerate only a narrow Vdd range (4.5 to 5.5v).

TTL gates (bipolar transistors) will generally switch faster than CMOS gates (but TTL gates consume too much power at high gate counts).

When TTL gates are quiescent (inputs are not switching), they are still drawing current and consuming power.

When CMOS gates are quiescent (inputs are not switching), they are not drawing current (only a very small amount of leakage current). CMOS gates consume power only when switching; the faster the clock rate, the more power consumed. CMOS gates are preferable for low power applications. BR 1/99 45

