
\qquad

BR $2 / 1 / 99 \quad 2$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Look for Shared Terms

$\begin{aligned} & F 1=\Sigma \mathrm{m}(11,12,13,14,15) \\ & \overline{A B}_{\mathrm{B}} \mathrm{AB}+\mathrm{ACD} \end{aligned}$					 $\mathrm{AB}^{\mathbf{A B}}$ 00 01 11 11 10					
							0	1	0	
00	0	0	$1 / 1$	0	$\left.\begin{array}{rl}01 & 0 \\ 11 & 0 \\ \hline & \mathbf{1} \\ \hline\end{array}\right)$					
01	0	0	1	0						
11	0	0	1	$1)$						
10	B		1							
$\mathbf{A B}$ 01 11 10 00 01 11 $=A^{\prime} C D+A B$										
00	0	0	01	0	Minimize separately					
01	0	0	01	10						
11	1		$1{ }^{11}$	$1)$	$\mathbf{F 2}=\Sigma \mathrm{m}(3,7,11,12,13,15)$					
10	0	0	0	0	ACD $\mathrm{ABC}+\mathrm{ACD}$					

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Lab 6: SSN Decoder

- Create a four output combinational block that will recognize fields in your SSN
- SSN is three fields: XXX - YY - ZZZZ
$-\mathrm{F} 1=1$ if input is equal to one of the numbers in the first group (XXX)
- F2 = 1 if input is equal to one of the numbers in the 2nd group (YY)
- F3 = 1 if input is equal to one of the numbers in the 3rd group (ZZZZ)
$-\mathrm{F} 4=1$ if input is equal to numbers in any group
\qquad

Constraints

- Can only use 1 each of the following devices
- 7400 (4 two-input NANDs)
\qquad
- 7402 (4 two-input NORs)
- 7404 (6 Inverters) \qquad
- 7408 (4 two-input AND)
- 7410 (3 three-input NAND) \qquad
- 7432 (4 two-input OR)
- 7451 (AND-OR-INVERT function) \qquad
- 7486 (4 two-input XOR gates) \qquad
BR $2 / 1 / 99 \quad 6$ \qquad

\qquad

What good is a 7451 ?

\qquad

If a SOP equation has two product terms, with only two terms for each product term, then can implement with a 7451.

If minimize ZEROS on K-Map, then get an SOP form for F'. The inverter on the output of the 7451 will convert it to F!!!

OR, can minimize ' 1 's, then put an external inverter on the output of the 7451 to get the high true version.
\qquad

Example for $\mathrm{SSN}=458702198$

Row A B C D		F1	F2	F3	F4	
0	0000	0	1	0	1	
1	0001	0	0	1	1	
2	0010	0	0	1	1	
3	0011	0	0	0	0	
4	0100	1	0	0	1	
5	0101	1	0	0	1	
6	0110	0	0	0	0	
7	0111	0	1	0	1	
8	1000	1	0	1	1	
9	1001	0	0	1	1	
10	1010	\mathbf{x}	x	x	x	
11	1011	x	x	x	\mathbf{x}	
12	1100	\mathbf{x}	x	\mathbf{x}	\mathbf{x}	
13	1101	x	x	x	x	
14	1110	x	x	\mathbf{x}	x	
15	1111	x	\mathbf{x}	\mathbf{x}	\mathbf{x}	
					BR $2 / 1 / 99$	9

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

First Try: Minimize each map, ignore shared

F2				
${ }^{\text {AB }}$		01		
00	0	0	X	1
01	1	0	X	1
11	0	0	X	X
10	1	0	X	x

$\mathrm{F} 3=\mathrm{A}+\mathrm{B}^{\prime} \mathrm{CD}^{\prime}+\mathrm{B}^{\prime} \mathrm{CD}^{\prime}$
$\mathbf{F 4}=\mathbf{A}+\mathbf{C}^{\prime}+\mathrm{BD}+\mathrm{B}^{\prime} \mathrm{D}^{\prime}$

But F4 is simply F1 + F2 + F3
11

An Implementation

Will try to implement F1, F2, F3 directly, then
implement F4 $=\mathrm{F} 1+\mathrm{F} 2+\mathrm{F} 3$
Need four inverters for $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \mathrm{D}^{\prime}$
$\mathrm{F} 1=\mathrm{BC}^{\prime}+\mathrm{AD}^{\prime} \quad($ use $7451+$ inverter, this the 5th inverter $)$

What about F2?
$\mathrm{F} 2=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{BCD}$
Do NOT have a 4 input NAND gate????

BR 2/1/99
12
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Final Gate Count

All gates from the '04 (6 inverters)
Part of the 7451
Three gates from the ' 08
One gate from the ' 10
Three gates from the ' 10
One gate from the ' 86
Two gates from the ' 32
There are MOST certainly other solutions......... Did not consider shared terms, did not minimize zeros. Many other avenues to try if these failed.

> BR 2/1/99

Debugging

\qquad

- Wire up ONE function at a time
- Start with whatever your simplest function is, then work towards hardest function.
- No need to proceed to next function until current one works
- If F1, F2, F3 all work, then getting F4 to work will \qquad be trivial.
- The TAs do NOT know what the correct solution is for your SSN! They will only be able to offer general debugging help.

BR 2/1/99
18
\qquad
\qquad
\qquad
\qquad
\qquad

