Two ways to think about logic signals

- Fixed logic convention
- High voltage always means 1, TRUE, Asserted
- Low voltage always means 0, FALSE, Negated
- Mixed Logic convention
- Can have High and Low true signals
- High true signals means that high voltage means 1, True, asserted
- Low true signals means that low voltage means 1, True, asserted
- In real world, have both high and low true signals.

High True vs. Low True Logic

- Different ways to say that a signal is high true
- Is high if signal is TRUE, is low if signal is FALSE
- Is high if signal is 1 , is low if signal is 0
- Is high if signal is asserted, is low if signal is negated
- Different ways to say that a signal is low true
- Is low if signal is TRUE, is high if signal is FALSE
- Is low if signal is 1 , is high if signal is 0
- Is low if signal is asserted, is high if signal is negated

BR 1/99
2

Asserted vs. Negated

- Asserted ALWAYS means that a signal is TRUE or logic 1.
- Logic 1 could be represented by a HIGH voltage (high true)
- Logic 0 could be represented by LOW voltage (low true)
- Negated ALWAYS means that a signal is FALSE or logic 0 .
- Logic 0 could be represented by a LOW voltage (high true)
- Logic 0 could be represented by a HIGH voltage (low true)

BR 1/99
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad ,
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
路

\qquad

THE Problem

Have two buttons, each button outputs a low voltage (L) \qquad when pressed.

\qquad
\qquad
\qquad
\qquad
\qquad
The rest of the lecture will be devoted to determining the answer.....

> BR 1/99

5 \qquad

\qquad

A B	Y
L	L

$\begin{array}{llll}\text { L } & \text { L } & \mathrm{H} \\ \mathrm{L} & \mathrm{H} & \mathrm{H}\end{array}$
$\begin{array}{lll}\mathrm{L} & \mathrm{H} & \mathrm{H} \\ \mathrm{H} & \mathrm{L} & \mathrm{H}\end{array}$
H H L

\qquad
\qquad

Fixed Logic Polarity vs Mixed Logic Polarity \qquad

- In Fixed logic polarity, every signal is considered \qquad high true.
- In Mixed logic polarity, can have high, low true signals.
- Low true signal names followed by '(L)' to indicate low true
\qquad
\qquad
\qquad
\qquad

BR $1 / 99 \quad 9$ \qquad

Fixed Polarity vs Mixed Polarity

- NAND, AND
- Fixed: (AB)' is read as "A nand B"
- Mixed: $(A B)(L)$ is read " A and B, low true".
- NOR, OR
- Fixed: (A+B)' is read as "A nor B"
- Mixed: (A+B) (L) is read "A or B, low true".
- NOT
- Fixed: (A)' is read as "NOT A"
- Mixed: (A) (L) is read as "A, low true"

BR 1/99
10

A	Y
L	H
H	L

Buffer that converts high true input to low true output

Buffer that converts low true input to high true output
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad

\qquad

Other Complete Logic Families

\qquad
The 7402 gate is also complete all by itself.

\qquad
\qquad
\qquad
\qquad
Any boolean equation can be implemented using either just 7400 gates or just 7402 gates. \qquad
BR 1/99 29
${ }^{29}$ \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sum of Products

- A boolean equation in the form:
$\mathrm{f}=$ and_term + and_term...+ and_term \qquad is called a Sum of Products (SOP)

$$
\mathrm{Y}=\mathrm{AB}+\mathrm{CD}
$$

Implementing this logic in two levels of gating is easy.

And-Or form

Nand-Nand form drawn in mixed logic convention

BR 1/99

31

Product of Sums

- A boolean equation in the form: $\mathrm{f}=$ (or_term) (or_term)... (or_term) is called a Product of Sums (POS).

$$
\mathrm{Y}=(\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})
$$

Implementing this logic in two levels of gating is easy

$7408-\mathrm{Y}$
Or-And form

What do you have to know?

- Definitions of Assertion, Negation, High-True, Low-true
- Low, High true switch construction
- Low, High True boolean functions of Voltage gates
- Problems in the form of the switch problems given in these notes
- Complete Logic Familes
- NAND-NAND form drawn in mixed logic. NORNOR form drawn in mixed logic. \qquad
\qquad

