
$\qquad$

Truth Table to SOP Form
Can write SOP form of equation directly from truth table.

| A B C | F | $\begin{aligned} & \mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+ \\ & \mathrm{AB}^{\prime} \mathrm{C}+\mathrm{ABC}^{\prime}+\mathrm{ABC} \end{aligned}$ |  |
| :---: | :---: | :---: | :---: |
| 000 | 0 |  |  |
| 001 | 0 |  |  |
| 010 | 0 |  | Note that each term in has |
| 011 | 1 | A'BC | ALL variables present. If a |
| 100 | 1 | $\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$ | product term has ALL |
| 101 | 1 | $\mathrm{AB}^{\prime} \mathrm{C}$ | variables present, it is a |
| 110 | 1 | ABC' | MINTERM. |
| 111 | 1 | ABC |  |

BR 21/99 2

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Minterms, Maxterms
We saw that:
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{ABC}^{\prime}+\mathrm{ABC}^{\prime}+\mathrm{ABC}$
SOP form. If a product term has all variables present, it is a
MINTERM.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=(\mathrm{A}+\mathrm{B}+\mathrm{C})\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}\right)$
POS form. If a sum term has all variables present, it is a
MAXTERM.

| All Boolean functions can be written in terms of either Minterms |
| :--- |
| or Maxterms. |

BR $21 / 99$
$\qquad$

| Minterm, Maxterm Notation |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Each line in a truth table represents both a Minterm and a Maxterm. |  |  |  |  |
| Row No. | A B C | Minterms | Maxterms |  |
| 0 | 000 | $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}=\mathrm{m}_{0}$ | $\mathrm{A}+\mathrm{B}+\mathrm{C}=\mathrm{M}_{0}$ |  |
| 1 | 001 | $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}=\mathrm{m}_{1}$ | $\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}=\mathrm{M}_{1}$ |  |
| 2 | 010 | $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}=\mathrm{m}_{2}$ | $\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}=\mathrm{M}_{2}$ |  |
| 3 | $\begin{array}{llll}0 & 1 & 1\end{array}$ | $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}=\mathrm{m}_{3}$ | $\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}=\mathrm{M}_{3}$ |  |
| 4 | 100 | $A^{\prime} B^{\prime} C^{\prime}=m_{4}$ | $A^{\prime}+B+C=M_{4}$ |  |
| 5 | 101 | $A B^{\prime} C=m_{5}$ | $\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}^{\prime}=\mathrm{M}_{5}$ |  |
| 6 | 110 | A B C' $=\mathrm{m}_{6}$ | $A^{\prime}+B^{\prime}+\mathrm{C}=\mathrm{M}_{6}$ |  |
| 7 | 111 | ABC $=\mathrm{m}_{7}$ | $A^{\prime}+B^{\prime}+C^{\prime}=M_{7}$ |  |
| BR 21/199 |  |  |  | 5 |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Using Minterms, Maxterms

A boolean function can be written in terms of Minterm or Maxterm notation as a shorthand method of specifying the function.
$\qquad$
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{ABC}^{\prime}+\mathrm{ABC}^{\prime}+\mathrm{ABC}$ $\qquad$
$=m_{3}+m_{4}+\mathrm{m}_{5}+\mathrm{m}_{6}+\mathrm{m}_{7}$
$=\Sigma \mathrm{m}(3,4,5,6,7)$
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=(\mathrm{A}+\mathrm{B}+\mathrm{C})\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}\right)$

$$
=\mathrm{M}_{0} \mathrm{M}_{1} \mathrm{M}_{2}
$$

$$
=\Pi \mathrm{M}(0,1,2)
$$

Minterms correspond to ' 1 's of F, Maxterms correspond to ' 0 's of F in truth table.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
RR 2/1/99 6 $\qquad$

$\qquad$

From Minterms to Maxterms to Truthtable
To go from Minterms to Maxterms, list the numbers that are NOT present (with 3 variables, minterm/maxterm numbers range from 0 to 7

|  | $\mathrm{M}_{0} \longrightarrow$ | A B C | F |
| :---: | :---: | :---: | :---: |
|  |  | 000 | 0 |
|  |  | 001 | 1 |
| $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma \mathrm{m}(1,2,6)$ |  | $\begin{array}{lllll}0 & 1 & 0\end{array}$ | 1 |
| (A,B,C) $=$ П $\mathrm{M}(0,3,4,5,7)$ | $\mathrm{M}_{3} \longrightarrow$ | 0111 | 0 |
| $=(\mathrm{A}+\mathrm{B}+\mathrm{C})\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}\right)$ | $\mathrm{M}_{4} \longrightarrow$ | 100 | 0 |
| $\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)$ | $\mathrm{M}_{5} \longrightarrow$ | 101 | 0 |
|  | $\mathrm{M}_{7} \longrightarrow$ | $\begin{array}{llll}1 & 1 & 0 \\ 1 & 1 & 1\end{array}$ | 0 |

$\qquad$
$\qquad$
$\qquad$

Maxterms correspond to ' 0 's in Truth table
$\qquad$

| Examples |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} \mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}) & =\Sigma \mathrm{m}(0) & & \text { (minterm form) } \\ & =\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime} & & (\text { SOP form }) \end{aligned}$ |  |  |  |
| $=\begin{gathered} \text { M }(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) \\ (\text { maxterm form }) \end{gathered}$ |  |  |  |
| $\mathrm{F}(\mathrm{A}, \mathrm{B})$ | $\begin{aligned} & =\sum \mathrm{m}(1,2) \\ & =\mathrm{A}^{\prime} \mathrm{B}+\mathrm{AB} \\ & =\mathrm{AB}^{\prime}(0,3) \\ & =(\mathrm{A}+\mathrm{B})\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right) \\ & =\mathrm{A} \text { xor } \mathrm{B} \end{aligned}$ | (minterm form) <br> (SOP form) <br> (maxterm form) <br> (POS form) <br> (did you recognize this?) |  |
| BR 21199 |  |  | 9 |


| Minterm Expansion |  |
| :---: | :---: |
| A minterm must have every variable present. If a boolean product term does not have every variable present, then it can be expanded to its minterm representation. $F(A, B, C)=A B+C \quad \text { neither } A B \text {, or } C \text { are minterms }$ |  |
| To expand AB to minterms, use the relation: $\mathrm{AB}=\mathrm{AB}\left(\mathrm{C}+\mathrm{C}^{\prime}\right)=\mathrm{ABC}+\mathrm{ABC} \mathrm{C}^{\prime}$ |  |
| To expand C to minterms, do: $\begin{aligned} & \mathrm{C}= \mathrm{C}\left(\mathrm{~A}+\mathrm{A}^{\prime}\right)=\mathrm{AC}+\mathrm{A}^{\prime} \mathrm{C}=\mathrm{AC}\left(\mathrm{~B}+\mathrm{B}^{\prime}\right)+\mathrm{A}^{\prime} \mathrm{C}\left(\mathrm{~B}+\mathrm{B}^{\prime}\right) \\ &=\mathrm{ABC}+\mathrm{AB}{ }^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C} \\ & \mathrm{~F}=\mathrm{AB}+\mathrm{C}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{AB}{ }^{\prime} \mathrm{C}+\mathrm{ABC}^{\prime}+\mathrm{ABC} \\ & \mathrm{~F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(1,3,5,6,7) \end{aligned}$ |  |
| BR 211199 | 10 |

$\qquad$

## Maxterm Expansion

A maxterm must have every variable present. If a boolean sum term does not have every variable present, then it can be expanded to its maxterm representation.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=(\mathrm{A}+\mathrm{B})(\mathrm{C}) \quad$ neither $(\mathrm{A}+\mathrm{B})$, or C are maxterms
To expand $(\mathrm{A}+\mathrm{B})$ to maxterms, use the relation:
$(\mathrm{A}+\mathrm{B})=\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime} \mathrm{C}\right)=\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}\right)(\mathrm{A}+\mathrm{B}+\mathrm{C})$
To expand C to minterms, do:
$\mathrm{C}=\mathrm{C}+\mathrm{A}^{\prime} \mathrm{A}=\left(\mathrm{A}^{\prime}+\mathrm{C}\right)(\mathrm{A}+\mathrm{C})=\left(\mathrm{A}^{\prime}+\mathrm{BB}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}+\mathrm{C}+\mathrm{BB}^{\prime}\right)$ $=\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}\right)(\mathrm{A}+\mathrm{B}+\mathrm{C})$
$\mathrm{F}=(\mathrm{A}+\mathrm{B})(\mathrm{C})=(\mathrm{A}+\mathrm{B}+\mathrm{C})\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}\right)$ $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Pi \mathrm{M}(0,1,2,4,6)$

BR 2/1/99
11

## Minimize from Minterm From

```
\(\mathrm{Y}=\Sigma \mathrm{m}(3,4,5,6,7)\)
\(\mathrm{Y}=\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{AB}{ }^{\prime} \mathrm{C}+\mathrm{ABC}^{\prime}+\mathrm{ABC}\)
Look for differences in only one variable
```

```
\(\mathrm{Y}=\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{AB}^{\prime}\left(\mathrm{C}^{\prime}+\mathrm{C}\right)+\mathrm{AB}\left(\mathrm{C}^{\prime}+\mathrm{C}\right)\)
```

$\mathrm{Y}=\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{AB}^{\prime}\left(\mathrm{C}^{\prime}+\mathrm{C}\right)+\mathrm{AB}\left(\mathrm{C}^{\prime}+\mathrm{C}\right)$
$=A^{\prime} B C+A B^{\prime}+A B$
$=A^{\prime} B C+A B^{\prime}+A B$
$=\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{A}\left(\mathrm{B}^{\prime}+\mathrm{B}\right)$
$=\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{A}\left(\mathrm{B}^{\prime}+\mathrm{B}\right)$
$=A^{\prime} B C+A$
$=A^{\prime} B C+A$
$=\mathrm{BC}+\mathrm{A}$

```
    \(=\mathrm{BC}+\mathrm{A}\)
```

A difference in only one variable is called a Boolean Adjacency.

BR 2/1/99
12

$\qquad$

## Karnaugh Maps

- Karnaugh Maps (K-Maps) are a graphical method of visualizing the 0 's and 1 's of a boolean function
- K-Maps are very useful for performing Boolean minimization.
- Will work on 2, 3, and 4 variable K-Maps in this class.
- Karnaugh maps can be easier to use than boolean equation minimization once you get used to it.

BR 2/1/99


$\qquad$

Plotting 2-Variable Functions
BR 2/1/99 17

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$

Plotting 3-Variable Functions

BR $2 / 1 / 99$
19

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Boolean Adjacency



Squares at bottom of map adjacent to squares top of map.
Each square is boolean adjacent to neighbor.

BR 2/1/99
21
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Plotting 3-Variable Functions |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Row | A B C | $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})$ |  |  |  |  |
| 0 | 000 | 1 |  | 1 | 0 |  |
|  | $\begin{array}{llll}0 & 0 & 1 \\ 0 & 1 & 1\end{array}$ | 0 | 01 | 0 | 0 |  |
|  | $\begin{array}{llll}0 & 1 & 1\end{array}$ | 0 | 11 | 0 | 0 |  |
| 4 | 100 | 0 | 10 | 1 | 1 |  |
| 5 | 101 | 0 |  |  |  |  |
| 6 | 110 | 1 |  |  |  |  |
|  | 111 | 0 |  |  |  |  |
| $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma \mathrm{m}(0,2,6)$ |  |  |  |  |  |  |
| BR 21199 |  |  |  |  |  | 22 |

$\qquad$

| Another 3-variable Example |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Row | A B C | F(A,B,C) |  |  | 1 |  |
| 0 | 000 | 0 |  | 0 | 1 |  |
| 1 | 001 | 0 |  | 0 |  |  |
| 2 | 010 | 0 | 01 | 0 | 1 |  |
| 3 | 011 | 0 | 11 | 0 | 0 |  |
| 4 | 100 | 1 | 10 | 0 | 1 |  |
| 5 | 101 | 1 |  |  |  |  |
| 6 | 110 | 1 |  |  |  |  |
| 7 | 111 | 0 |  |  |  |  |
| $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma \mathrm{m}(4,5,6)$ |  |  |  |  |  |  |
| BR 21199 |  |  |  |  |  | 23 |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Plotting 4-Variable Functions

| Row/ A B C D , F(A,B,C,D) |  |  | CD ${ }^{\text {AB }}{ }^{0} 0001010110$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0000 | $?$ |  |  |  |  |  |  |
| 1 | 0001 | $?$ |  | ? | ? | ? | ? |  |
| 2 | 0010 | ? | 00 | ? | ? | ? | ? |  |
| 3 | 0011 | ? | 01 | ? | ? | ? | ? |  |
| 4 | 0100 | $?$ | 11 | ? | ? | ? | ? |  |
| 5 | 0101 | ? |  | ? | ? | ? |  |  |
| 6 | 0110 | ? | 10 | ? | ? | ? | ? |  |
| 7 | 0111 | ? |  |  |  |  |  |  |
| 8 | 1000 | ? |  | B |  |  |  |  |
| 9 | 1001 | ? | CD |  | 01 | 11 | 10 |  |
| 10 | 1010 | ? | 00 | r0 | r4 | r12 | r8 |  |
| 11 | $\begin{array}{lllll}1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0\end{array}$ | $?$ | 01 | r1 | r5 | r13 | r9 |  |
| 13 | 1101 | ? | 11 | r3 | r7 | r15 | r11 |  |
| 14 | 1110 | ? |  |  |  |  |  |  |
| 15 | 1111 | ? | 10 | r2 | r6 | r14 | r10 |  |
| BR 2/1/99 |  |  |  |  |  |  |  | 24 |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Boolean Adjacency |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CD ${ }^{\text {AB }} 00$ |  | 01 | 11 | 10 |  |
| 00 | f(A $\left.{ }^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}\right)$ | f(A $\left.{ }^{\prime} \mathrm{BC}^{\prime} \mathrm{D}^{\prime}\right)$ | f(ABC' ${ }^{\prime}$ ') | f(AB'C'D') |  |
| 01 | f(A $\left.\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}\right)$ | $\left.\mathrm{f}^{\left(A^{\prime} \mathrm{BC}\right.}{ }^{\prime} \mathrm{D}\right)$ | f(ABC'D) | $\mathrm{f}\left(\mathrm{AB}{ }^{\prime} \mathrm{C}^{\prime}\right.$ ) |  |
| 11 | f(A ${ }^{\prime} \mathrm{B}^{\prime} \mathrm{CD}$ ) | $\mathrm{f}\left(\mathrm{A}^{\prime} \mathrm{BCD}\right)$ | f(ABCD) | $\mathrm{f}\left(\mathrm{AB}{ }^{\prime} \mathrm{CD}\right)$ |  |
| 10 | f(A'B'CD') | $\mathrm{f}\left(\mathrm{A}^{\prime} \mathrm{BCD}^{\prime}\right)$ | f(ABCD') | $\mathrm{f}\left(\mathrm{AB}^{\prime} \mathrm{CD}{ }^{\prime}\right)$ |  |
| Squares at bottom of map adjacent to squares top of map and viceversa. |  |  |  |  |  |
| Squares at left edge are adjacent to squares at right edge and viceversa. |  |  |  |  |  |
| BR 2/1/99 |  |  |  |  | 25 |

$\qquad$

## Plotting 4-Variable Functions


$\qquad$ $00001 \quad 0$

| 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 1 | 0 |


| 0 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 0 | 1 |


| 0 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 0 | 0 |

$\begin{array}{ll}1 & 0 \\ 100 & 0 \\ 1 & 0\end{array}$

|  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: |
| CD | 00 | 01 | 11 | 10 |
| 00 | 0 | 0 | 0 | 0 |
| 01 | 0 | 0 | 0 | 0 |
| 11 | 1 | 0 | 1 | 0 |
|  | 10 | 1 | 1 | 0 |

$F=\Sigma m(2,3,6,10,15)$

2 | 1 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 0 | 0 |
| 0 |  |  |  |  |

$\qquad$
$\qquad$
$\qquad$
$\qquad$

| 1 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 0 |

$15 \begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$
26

## What do you need to Know?

- Minterm, Maxterm definitions
- Truth table to Minterms, vice versa $\qquad$
- Truth table to Maxterms, vice versa
- Minterms to Maxterms, vice versa $\qquad$
- Plotting 2,3,4 variable functions on K-Maps $\qquad$
$\qquad$
$\qquad$
$\qquad$

