3 Binary Adder

In this experiment, the student will become familiar with the operation of a 4-bit binary adder, and will also learn how to cascade two 4-bit binary adders to form an 8-bit binary adder.

I. 4-Bit Binary adder

The TA will program one of your 22V10 Programmable logic devices so that it implements a 4-bit binary adder function. The pinout for this device is:

- Pin 12 - GND, Pin 24 - Vcc.
- Four bit A input: $A(3):$ pin2, $A(2)$: pin3, $A(1):$ pin4, $A(0)$: pin5
- Four bit B input $B(3)$: pin6, $B(2)$: pin7, $B(1)$: pin8, $B(0)$: pin9
- Carry-In : pin 10
- Four Bit Sum output: Sum(3): pin22, Sum(2): pin21, Sum(1): pin20, Sum(0): $\operatorname{pin} 19$
- Carry Out: pin 18

Unused inputs can be left unconnected.
The logic symbol for a 4 bit binary adder is shown below. $\mathrm{A}(0)$ is the LSB (least significant bit) of A, A(3) is the MSB (Most Significant Bit) of A.

A. Connect the 4 bit Sum output of the adder to LEDs. Connect COUT output to an LED. Connect the two 4 bit inputs $\mathrm{A}[3: 0], \mathrm{B}[3: 0]$ to switch inputs. Use a wire connection to either GND or VCC for the CIN input as appropriate for testing.
B. Fill in Table \#1 in the lab data sheet for your circuit.

II. 8 Bit Binary adder

A. Connect two of the 4-bit binary adder chips to form an 8-bit adder. Use the diagram below to guide you (the carry out of the first 4-bit adder becomes the carry-in of the $2^{\text {nd }}$ four-bit adder).

8 Bit Adder from two 4-bit Adders
 Bus notation is used in schematic

Tie Cin to GND. Tie 8 switch inputs to the A input (bits 7 down to 0). Use connections to $+5 \mathrm{v} / \mathrm{GND}$ for the B inputs.
B. Verify the operation of the 8 bit adder by applying the test inputs below (values are in DECIMAL). Fill in Table \#2 of the lab data sheet.
$\left.\begin{array}{|cc|}\hline \begin{array}{ll}\text { a) } \\ + & 56 \\ +\end{array} & \begin{array}{|cc}\text { b) } & 75 \\ +(-22)\end{array}\end{array} \quad \begin{array}{|cc|}\hline \begin{array}{ll}\text { c) } & -53 \\ + & (-42)\end{array}\end{array} \quad \begin{array}{|cc|}\hline \text { d) } & -65 \\ + & (-80)\end{array}\right]$

Two's complement overflow could be a problem for some of the above additions. Which ones overflow the 8 -bit range for two's complement?

PRELAB Data page

TA Checkoff

1. Fill in the following table (Table \#1) for the operation of the 4-bit adder.

Cin	A3	A2	A1	A0	B3	B2	B1	B0	S3	S2	S1	S0	Co
0	0	0	1	0	0	1	0	1					
0	0	1	1	0	1	0	0	0					
0	0	1	1	0	1	1	1	0					
0	1	1	0	0	0	1	1	1					
1	0	0	1	0	0	1	0	1					
1	0	1	1	0	1	0	0	0					
1	0	1	1	0	1	1	1	0					
1	1	1	0	0	0	1	1	1					
0	0	0	0	0	0	0	0	0					
1	1	1	1	1	1	1	1	1					

2. Perform the binary addition operations in section III -8 bit additions

Examples:

Decimal	Binary	Decimal	Binary
36	00100100	53	00110101
(+) 15	00001111	(-) 19	11101101
51	00110011	34	00100010

Fill in the following values:

Decimal	Binary	Decimal
56		Binary
$(+) 23$		$+(-22)$

Decimal Binary	Decimal	Binary
-53		-65
$(+)(-42)$		$+(-80)$

Lab Data Sheet

TA CHECKOFF
4-Bit Binary Adder (Table 1)

Cin	A3	A2	A1	A0	B3	B2	B1	B0	S3	S2	S1	S0	Co
0	0	0	1	0	0	1	0	1					
0	0	1	1	0	1	0	0	0					
0	0	1	1	0	1	1	1	0					
0	1	1	0	0	0	1	1	1					
1	0	0	1	0	0	1	0	1					
1	0	1	1	0	1	0	0	0					
1	0	1	1	0	1	1	1	0					
1	1	1	0	0	0	1	1	1					
0	0	0	0	0	0	0	0	0					
1	1	1	1	1	1	1	1	1					

8-Bit Adder (Table 2):

	Binary								
Decimal	CO	MSB 7	6	5	4	3	2	1	LSB 0
56	X								
23	X								
75	X								
-22	X								
-53	X								
-42	X								
-65	X								
-80	X								

