
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example Groupings on 3-Variable K-Maps

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

$\mathrm{BC}^{\mathbf{A}} 0 \quad 1$			Illegal Groupings
0	1	0	Illegal Grouping! Minterms are not boolean adjacent!
01	o	1	
11	0	0	$A^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime}, A B^{\prime} \mathbf{C}$ will NOT reduce to a single product term$A^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime}+A B^{\prime} \mathbf{C}=\mathbf{B}^{\prime}\left(\mathbf{A}^{\prime} \mathbf{C}^{\prime}+\mathbf{A C}\right)$
10	0	0	

\qquad
\qquad
\qquad
\qquad
\qquad
Valid groupings will always be a power of 2 . (will cover $1,2,4,8$, etc minterms).
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Four Corner Grouping on 4-Variable Map \qquad AB

\qquad
\qquad
$\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=\mathbf{B}^{\prime} \mathbf{D}^{\prime}$
\qquad
\qquad
\qquad
BR $2 / 1 / 99 \quad 9$ \qquad

Some Definitions

Implicant: Any single 1 or any group of 1 's is called an implicant of \mathbf{F}. Any possible grouping of ' 1 's is an implicant.

${ }^{\mathbf{A}}$	0	1	$\sim^{\text {AC }}$	
00	0	1		
01	0	0		
11	1	1		
	1			

Prime Implicant: A covering that cannot be combined with some other covering to eliminate a variable.

Minimum SOPs

The minimum SOP expression consists of some (but not necessarily all) of the prime implicants of a function.

If a SOP expression contains a term which is NOT a prime implicant, then it CANNOT be minimum.

BR 2/1/99

Prime Implicants

AB								
CD 00001011110					EACH of the coverings is a PRIME IMPLICANT.			
00	0	1	170					
01	1	1	1	8	PRIME IMPLICANT.			
11	1	10	0	0	BC'	$A^{\prime} C^{\prime}$ D	,	$A^{\prime} \mathbf{B}^{\prime} \mathrm{D}$
10	0	0		0				

Minimum SOP will have some or all of these prime implicants. The included prime implicants must cover all of the ONEs.
$\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=\mathbf{B C}^{\prime}+\mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{D} \quad$ (minimum \# of PIs) $=B^{\prime} C^{\prime}+A^{\prime} \mathbf{B}^{\prime} \mathbf{D}+\mathbf{A}^{\prime} \mathbf{C}^{\prime} \mathbf{D}$ (valid, but not minimum) $\neq A^{\prime} \mathbf{B}$ 'D + A' $^{\prime}$ ' \mathbf{D} (both PI's, but all ' 1 's not included!) BR 2/1/99

Non-Essential vs. Essential Prime Implicants

$\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=\mathbf{B C}^{\prime}+\mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{D} \quad$ (minimum \# of PIs)
Prime Implicant $\mathbf{A}^{\prime} \mathbf{C}^{\prime} \mathbf{D}$ is a NON-ESSENTIAL
prime implicant because its ' 1 's are covered by other PIs. A PI is ESSENTIAL if it covers a MINTERM that cannot be covered by any other PI.

BR 2/1/99

An example with more than one solution

Recall that a covering is a Prime Implicant if it cannot be combined with another covering to eliminate a variable.

BR 2/1/99
14

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
星
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Minimal Solution

A minimal SOP will consist of prime implicants.
A minimal SOP equation will have all of the essential prime implicants on the map. By definition, these cover a minterm that may not be covered by some other prime implicant.

The minimal SOP equation may or may not include nonessential prime implicants. It will include non-essential prime implicants if there are ' 1 's remaining that have not been covered by an essential prime implicant.

0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | | | |

- | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | |

0	0	1	1	1
	0	1	1	

$\begin{array}{llllll}0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0\end{array}$

0	1	0	1	0

$\begin{array}{lllll}0 & 1 & 1 & 0 & 1\end{array}$
10000

1	0	0	1	0
1	0	1	0	x

| 1 | 0 | 1 | 0 | x |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 1 | x |

1100

1	1	0
1	0	1
1	1	x

1	1	1	1
	0	x	
	1	1	1

15	1	1	1	1	x	x

 Don't Cares
 Recall that Don't Cares
 are labeled as ' \(X\) 's in
 truth table. Can treat X's
 as either ' 0 's or ' 1 's

Non BCD numbers are don't
cares because will never be
applied as inputs.
BR 2/1/99
\qquad

\qquad

\qquad

Minimize 0's, then Complement to get POS \qquad

| | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CD | | | | |
| | 00 | 01 | 11 | 10 |

\qquad
\qquad $=\mathbf{C}(\mathrm{BD})^{\prime}$ $=\mathbf{C}\left(\mathbf{B}^{\prime}+\mathrm{D}^{\prime}\right)$

Minimizing zeros, then applying inverse to both sides is a way to get to minimum POS form!!!!!

BR 2/1/99

What do you need to know?

- How to minimize functions using 2,3,4 variable Kmaps.
- Group 1's to get to minimal SOP form
- Group 0's then take complement to get to minimal POS form.
- Definitions of implicant, prime implicant, non- \qquad essential prime implicant, essential prime-
implicant.
- Be able to recognize these on a K-map.
- How to treat 'X's on a K-map. \qquad
BR $2 / 1 / 99$
21 \qquad

