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General Sequential Design

So far we have, we have looked at basic latches, FFs and
common sequential building blocks.

All of these can be represented by a general block diagram:
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Describing Sequential Systems

• So far we have used  Truth Tables to describe
sequential systems

• Can also use  Bubble Diagrams and Algorithmic
State Machine Charts (ASM) to describe a
sequential system.

• Another name for a sequential system is a Finite
State Machine  (FSM).

• A sequential system with N flip-Flop has 2N

possible states, so the number of possible states is
FINITE.
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DFF as a Finite State Machine
A DFF is a finite state machine with two possible states.
Lets call these states  S0 and S1.   (state enumeration).

Furthermore, lets say  when the Q output = ‘0’ , then we are
in State S0, and that when Q output = ‘1’ , we are in State
S1.  This is called the State Encoding.

S0
q=0

0

S1
q=1

1

1

0

Bubble Diagram: States represented by bubbles.  State
transitions represented by arrows.  Labeling on arrows
represent input values (in this case, the D-input!).
Labeling inside bubbles represent output values.
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Algorithmic State Machine Chart for DFF
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A Finite State Machine
(FSM) can be described
via either a Bubble
diagram or an ASM
chart.

ASM charts are better
for complex FSMs.  We
will use ASM charts in
this class.

State S0 is usually the
asynchronous Reset
state.
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Algorithmic State Chart (ASM)
• An ASM chart can be used to describe FSM

behavior

Only three action signals can appear within an ASM chart:
State box.   Each box represents a state.
Outputs within a state box is an
UNCONDITIONAL output (always asserted
in this state).

Decision box.  A condition in this box
will decide next state condition.

Conditional output box.  If present, will
always follow a decision box; output
within it is conditional.
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Algorithmic State Machine Chart for JKFF
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Finite State Machine Implementation

Given an Algorithmic State Machine chart that describes a Finite
State Machine,  how do we implement it?????

Step #1:  Decide on the State Encoding (how many Flip Flips
do I use and how what should the FF outputs be for EACH
state).  The problem definition may decide the state encoding
for you.

Step #2:  Decide what kind of FFs to use!  (We will always
use DFFs in this class, but you could use JKFFs or TFFs if
you wanted to).

Step #3:   Write the State Transition Table.

Step #4: Write the FF input equations, and general output
equations from the state transistion table.
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Problem Definition
Design a Modulo three counter.  The count sequence is:

   “ 00”  →  “ 01”  → “ 10”  → “ 00”  →  “ 01”  → “ 10” , etc.

There is an “en”  input that should control counting (count
when en=1, hold value when en=0).  Assume ACLR line
used to reset counter  to “ 00” .

How many states do we need?  Well, we have three unique
output values, so lets go with three states.

EN
CLK Y[1:0]

ACLR
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ASM Chart for Modulo Three Counter
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State Transition Table

Inputs(EN)       Present State               Next State   Y
  0                         S0                                  S0            00
  0                         S1                                  S1            01
  0                         S2                                  S2            10
  1                         S0                                  S1            00
  1                         S1                                  S2            01
  1                         S2                                  S0            10

State transition table shows next state, output values for
present state, input values.
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Decisions
• State encoding - will be based on number of FFs

we use.
– Three states means the minimum number of FFs we

can use  two FFs (log2(3) = 2).

• I f we use two FFs, then could pick a state
encodings like:
– S0: 00,  S1: 01, S2: 10    (binary counting order )
– S0: 01, S1:01, S2: 11   (gray code - may result in less

combinational logic)

• Could also use 1 FF per state (3 FFs) and use one
hot encoding
– S0:001, S1: 010, S2: 100  (may result in less

combinational logic)
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Decisions (cont.)

• What type of FF to use?
• DFF -  most common type, always available in

programmable logic
• JKFF - sometimes available, will usually result in

less combinational logic  (more complex FF means
less combinational logic external to FF)

Lets use two FFs with state encoding S0=00, S1=01,
S2=10.

Lets use DFFs.
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New State Transition Table

Inputs(EN)       Present             Next       D1D0      Y
                          State                  State
                         (Q1Q0)         (Q1Q)*
  0                         00                     00           00          00
  0                         01                     01           01          01
  0                         10                     10           10          10
  1                         00                     01           01          00
  1                         01                     10           10          01
  1                         10                     00           00          10

Modify State Transition table to show what FF inputs
need to be in order  to get to that state.  Also, use actual
state encodings

For DFFs, D inputs are simply equal to next state!!!!
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D-input Equations, Y equations

D0 =  EN’  Q1’Q0  +  EN Q1’Q0’

D1 =  EN’  Q1 Q0’  +  EN Q1’  Q0

Y0 = Q0

Y1 = Q1

The output Y is simply the DFF outputs!  Here is one case
where state encoding is affected by problem definition
(does not make much sense to use a different state
encoding, even though we could do it).

Unoptimized equations:
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DFF Implementation
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What if we used JKFFs?
Need to change State Transistion table to reflect JK input values.

Inputs       Present             Next       J1 K1    J0 K0      Y
  EN          State                  State
                 (Q1Q0)           (Q1Q0)*
  0                 00                     00           0  X       0  X       00
  0                 01                     01           0  X       X 0        01
  0                 10                     10           X 0        0  X       10
  1                 00                     01           0 X        1 X        00
  1                 01                     10           1 X        X 1        01
  1                 10                     00           X 1        0 X        10

JK FF Q transitions:  0→0  (J=0, K=X); 0→1  (J=1, K=X);
                                  1→1  (J=X, K=0); 1→0  (J=X, K=1);
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JK Input Equations, Output Equations

Unoptimized equations

J0 =  EN Q1’  Q0’               K0 = EN Q1’  Q0

J1 = EN Q1’  Q0                 K1 = EN Q1 Q0’

Y0 = Q0

Y1 = Q1

Using JK FFs will mean simpler external optimized
combinational logic because FFs are more complex
(provide more functionality).
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JK FF Implementation

JQ
C
K

JQ
C
K

CLK

J0 =  EN Q1’  Q0’               K0 = EN Q1’  Q0 

J1 = EN Q1’  Q0                 K1 = EN Q1 Q0’

EN

Y0

Y1

ACLR input to
JKFFs not shown.

Q0

Q1

J0

K0

J1

K1

BR 8/99 20

3 DFFs and One Hot Encoding
State encoding:  S0 = 001, S1 = 010,  S2 = 100

Inputs       Present             Next        D2D1D0       Y
  EN          State                  State
                (Q2Q1Q0)       (Q2Q1Q0)*
  0                 001                     001           001          00
  0                 010                     010           010          01
  0                 100                     100           100          10
  1                 001                     010           010          00
  1                 010                     100           100          01
  1                 100                     001           001          10
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DFF input equations, Output Equations
D0  =  EN’Q0 + ENQ2
D1  =  EN’Q1 + ENQ0
D2 =   EN’Q2 + ENQ1

Y0 =   EN’Q1 + EN Q1 =  Q1
Y1 =  EN’Q2 + EN Q2  =   Q2

In equations, because a FF Q will only be ‘1’  in a single state,
do not have to include all FFs to define state!!
( Q2’Q1’Q0  =   Q0!!,    Q2’Q1Q0’  = Q1!,  Q2Q1’Q0’  = Q2!!)
This is one of the advantages of one-hot encoding!
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Generic Next State Equations
Generic next state equations can be written directly from the ASM
chart as an alternative to the Transition table

S*  =  (conditions to remain in this state) + (conditions to enter state)

From ASM chart of modulo three counter:
S0*   =  EN’ S0 +  EN S2
S1*  = EN’  S1 + EN S0
S2*  =  EN’S2 + EN S1

If One hot encoding and DFFs are used, then Generic Next
State equations ARE the specific next State Equations!!

D0 = EN’Q0 + EN Q2
D1 = EN’Q1 + EN Q0
D2 = EN’  Q2 + EN Q1


