
\qquad
\qquad

Another example of FSM timing, this time controlling a register.

A Comparator

Another common combinational building block is a comparator.

$\mathrm{A}=\mathrm{B}$ if $\mathrm{A}(0)=\mathrm{B}(0)$ and $\mathrm{A}(1)=\mathrm{B}(1) \ldots$ and $\mathrm{A}(\mathrm{n}-1)=\mathrm{B}(\mathrm{n}-1)$

Recall that "xnor" function is ' 1 ' if $A=0, B=0$ or $A=1, B=1$! So AeqB is:

AeqB $=(A(0)$ xnor $B(0))$ and $(A(1)$ xnor $B(1))$ and \ldots.etc.

What Causes Glitches on outputs of FSMs?

- Many combinational paths in logic that defines next state.
- If these paths have unequal numbers of gates, or gates have different delays, then glitches can occur.
- We normally don't care about these glitches as long as the output lines are STABLE before the next clock edge (satisfy the setup time requirement)
- If output lines are connected to asynchronous control inputs, then glitches can be a BIG problem!
- Solution: Don't connect asynchronous controls lines to FSM outputs or guarantee FSM outputs are glitch free (come directly $\underset{\text { BR } 1 / 199}{ }$ from a FF).

FSM/Datapaths No-Nos

 from data values in registers RA,RB/RC.
The adder has a COMBINATIONAL LOOP!! Will oscillate!!! Bad!!!

FSM/Datapaths No-Nos

Must use a Register to hold value of multiply/add for next multiply/add operation. Good!!!

