DFFs are most common

- Most programmable logic families only have DFFs
- DFF is fastest, simplest (fewest transistors) of FFs
- Other FF types (T, JK) can be built from DFFs
- We will use DFFs almost exclusively in this class
- Will always used edge-triggered state elements (FFs), not level sensitive elements (latches).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Synchronous vs Asynchronous Inputs

\qquad

Synchronous input: Output will change after active clock edge Asychronous input: Output changes independent of clock
\qquad

S Flip-Flops often have async set, reset control.
D input is synchronous with respect to Clk
S, R are asynchronous. Q output affected by S, R independent of C. Async inputs are dominant over Clk. S,R inputs often called Pre (preset) and Clr (clear) inputs.

> BR 8/99

Flip-Flop, Latch Timing

- Propagation Delay

- C2Q: Q will change some propagation delay after change in C. Value of Q is based on D input for DFF.
- S2Q, R2Q: Q will change some propagation delay after change on S input, R input
- Note that there is NO propagation delay D2Q for DFF!
- D is a Synchronous INPUT, no prop delay value for synchronous inputs

There is NO delay from D to Q!!! The clock input is what triggers the change, not the D input!!!

$$
\text { BR } 8 / 99
$$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Setup, Hold Times

- Synchronous inputs (e.g. D) have Setup, Hold time specification with respect to the CLOCK input
- Setup Time: the amount of time the synchronous input (D) must be stable before the active edge of clock
- Hold Time: the amount of time the synchronous input (D) must be stable after the active edge of clock.

BR $8 / 99$
If changes on D input violate either setup or hold time, then correct FF operation is not guaranteed.
Setup/Hold measured around active clock edge.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

