Sequential Systems

- A combinational system is a system whose outputs depends only upon its current inputs.
- A sequential system is a system whose outputs depends on the current inputs and the system's current state.
- All systems we have looked at to date have been combinational systems.

Flip-Flops/ Latches

- Latches and Flip-Flops are devices that can have two internal states $(0,1)$
- The output of a latch or a Flip-Flop (FF) is dependent upon its CURRENT STATE and CURRENT INPUTS.
- Latches and FFs are the simplest examples of sequential systems.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RR $8 / 99$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What about $\mathrm{S}=\mathrm{R}=1$? (Set,Reset both true?) \qquad

\qquad
\qquad
\qquad

Assume that \mathbf{S}, \mathbf{R} both transition to 1 simultaneously. \qquad
Q becomes ' 0 ', but Q ' remains ' 0 '! Outputs are no longer complements of each other. \qquad
\qquad

What happens when S, R return to 0 ? \qquad

Oscillation occurs is S,R return to 0 simultaneously! At some point the system will settle into a stable condition. The bottom line is that $S=R=1$ is an illegal input condition (or design the SR latch such that one input is \qquad DOMINANT).

BR $8 / 99$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
When switch is in \mathbf{R} position, Q is low. When switch is in S position, Q is high.
When switch is flipped, mechanical bounce occurs on either the S or R terminal. SR Latch prevents bounce from being seen on \mathbf{Q} output.
BR 8/99

11
BR 8 899 12 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Terminology

- A bistable memory device is the generic term for the elements we are studying
- Can use the term latch or flip-flop to refer to these devices
- latch: bistable memory device with level sensitive triggering (no clock)
flip-flop: bistable memory device with edgetriggering (with clock)
- Warning: Your author (Roth) uses the terminology Flip-Flop and Clocked Flip-Flop instead of latch and Flip-Flop
- latch, flip-flop more standard

BR 8/99

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Data Flip-Flop (DFF, falling edge triggered) \qquad

	X	Q	Q	
$\rightarrow 0$	D	X	D	$\left.\quad \begin{array}{l}\text { edge triggered. Change } \\ \text { whatever the } D \\ \end{array}\right)$

$\begin{array}{ll}\mathrm{D} & \mathrm{Q}-\quad \begin{array}{l}\mathrm{C} \text { is the clock input. } \mathrm{D} \text { input is only } \\ \text { sampled at a clock edge. }\end{array} \\ \mathrm{C} & \mathrm{Q},\end{array}$
\qquad
\qquad
\qquad
\qquad
\qquad
BR 8/99 17
17 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Togggle Flip-Flop (rising edge triggered) \qquad

\qquad
\qquad
\qquad
TFF

\qquad
\qquad
BR $8 / 99 \quad 26$.

\qquad

What do you have to know? \qquad

- Definition of a sequential system
- SR Nand latch, SR Nor latch, D latch, DFF, JKFF, TFF
- Operation all of the above
- Implementation of SR Nand, SR Nor, D latch, DFF \qquad
- Switch Debouncing
- Clock waveform characteristics
\qquad
\qquad
\qquad
\qquad
\qquad

