
1

BR 1/99 1

Dice Game Implementation

• Why was dice game implemented in three 22V10
PLDs?

• What are the resources needed by the Dice Game?
– Outputs: 6 for dice values (3 bits each dice), win, loss
– Inputs: Ra, Rb, Reset, Clk
– 6 FFs for dice, minimum 3 FFs for FSM, 4 FFs for

Point register (13 total)

• 22V10 has
– 12 input-only pins, 10 input/output pins
– 10 FFs (1 FF per input/output pin)

• Need at least TWO 22V10s just for FFs

BR 1/99 2

Partitioning of Design
• Splitting a design over multiple PLDs is called “partitioning”
• Number of inputs will not be a concern

– Will be limited by # of FFs, # of outputs
• Could we have used just two PLDs? (see next page)

– PLD_A: 3 FFs for Cntr, 3 FFs for FSM, 7 outputs
(Cntb[2:0], Win, Lose, Ena, Sp). Could even use one-hot
encoding for FSM (3 more FFs, three more outputs).

– PLD_B: 3 FFs for Cntr, 4 FFs for Point Register, 7
outputs (Cnta[2:0], Eq, D7, D11, D2312). But 4 FFs for
Cntr consumes 4 outputs so 11 outputs total!!!!

– This division of the logic will not work.
• Some other partition of the logic could possibly be found.

Three PLDs gives good observation of internal signal values.

BR 1/99 3

Could we have used 2 PLDs? - NO

1-to-6
Cntr

1-to-6
Cntr

Adder

Cntb

Cnta

Point
Register

Comparator

dicesum

Test
Logic

C
o
n
t
r
o
l

Roll

D7

D11
D2312

eq

PLD_A

Rb

Ra

sp

win

lose

PLD_B

Ena

PLD_B needs 11 outputs!

2

BR 1/99 4

Three PLD Implementation

1-to-6
Cntr

1-to-6
Cntr

Adder

CntbCnta

Point
Register

Comparator

dicesum

Test
Logic

C
o
n
t
r
o
l

Roll

D7

D11
D2312

eq

Dpathb.vhd

Dpatha.vhd

control.vhd

Rb

Ra

sp

win

lose

BR 1/99 5

VHDL For Three PLD Solution

• Up to this time, have been using VHDL to specify
boolean equations.

• VHDL has high-level statements that allow more
natural specification of a problem

• Example: What is the boolean equation for signal
“D7”? (=1 when dicesum = 7).

• VHDL Boolean equation:
D7 <= (not dsum(3)) and dsum(2) and dsum(1) and dsum (0);

• High level VHDL Statement:
D7 <= ‘1’ when (dsum = “0111”) else ‘0’;

BR 1/99 6

“dpathb” Details

DIN
4

C

LD

Register

Point

4

R

Dicesum
(from
dpatha)

sp
(from
control)

Compare

Clk

Reset

Eq
(1 if point = sum)

Test
Logic

D7 (1 if sum=7)

D11 (1 if sum=11)

D2312
(1 if sum=2,3 or 12)

“sp” (save point) loads value
of dicesum into register.

3

BR 1/99 7

VHDL for “dpathb”

entity dpathb is
 port (clk,reset: in std_logic;
 dicesum: in std_logic_vector(3 downto 0);
 sp: in std_logic;
 point: out std_logic_vector(3 downto 0);
 eq: out std_logic;
 d7_i: out std_logic;
 d11_i: out std_logic;
 d2312_i: out std_logic

);
end dpathb;

Entity (input/outputs)
declaration

BR 1/99 8

VHDL for “dpathb” (cont)

architecture a of dpathb is
 signal q,d: std_logic_vector (3 downto 0);
begin
 point <= q; -- point register output

-- Flip flops for point register
 stateff: process (clk,reset)
 begin
 if (reset = ’1’) then
 q <= "0000";
 elsif (clk’event and clk=’1’) then
 q <= d;
 end if;
 end process stateff;

 -- equations for D inputs of point register
d <= dicesum when (sp = ’1’) else q;

Note that ‘D’ is equal
to dicesum when sp is
asserted else keeps its
same state - this is a
register!!!

DFFs for point
register

BR 1/99 9

Boolean equations vs. High Level
I could have specified the boolean equations for each ‘d’ FF
input of the point register as:

 d(0) <= (sp and dicesum(0)) or ((not sp) and (q(0)) ;
 d(1) <= (sp and dicesum(1)) or ((not sp) and (q(1)) ;
 d(2) <= (sp and dicesum(2)) or ((not sp) and (q(2)) ;
 d(3) <= (sp and dicesum(3)) or ((not sp) and (q(3)) ;

However, it is much easier (and clearer!) to simply write:

 d <= dicesum when (sp = ‘1’) else q;

This statement DOES REPRESENT the above boolean
equations; it is simply expressed differently.

4

BR 1/99 10

VHDL for “dpathb” (cont)

-- other equations
 eq <= ’1’ when (dicesum = q) else ’0’;

 d7_i <= ’1’ when (dicesum = "0111") else ’0’;

 d11_i <= ’1’ when (dicesum = "1011") else ’0’;|

 d2312_i <= ’1’ when ((dicesum = "0010") or
 (dicesum = "0011") or
 (dicesum = "1100"))

 else ’0’;

end a;

Again, we
could have
written
boolean
equations, but
this is clearer.

BR 1/99 11

“dpatha” Details

Clk
C 3

 EN

 R

Cntr

Q

Roll
(from control)

Reset

C 3

 EN

 R

Q
Logic

Roll

Clk

Reset

Cntb

Cnta

A
d
d
e
r

4

dicesum

3

Ena

Ena = 1 when Cntb = 6 and Roll = 1

Counters count
1,2,3,4,5,6,1,2, etc

Cntr

BR 1/99 12

VHDL for dpatha

ntity dpatha is
 port (clk,reset: in std_logic;

 roll : in std_logic;
 dicesum: out std_logic_vector(3 downto 0);
 douta: out std_logic_vector(2 downto 0);
 doutb: out std_logic_vector(2 downto 0)

);

5

BR 1/99 13

architecture a of dpatha is
 signal cnta, cntb: std_logic_vector(2 downto 0);
 signal en_a: std_logic; -- enable for counter A
 signal sum: std_logic_vector(3 downto 0);
 signal c1,c2,c3: std_logic; -- carry signals

 begin

 douta <= cnta;
 doutb <= cntb;
 dicesum <= sum;

 en_a <= ’1’ when ((cntb = "110") and (roll = ’1’))
 else ’0’;

-- State Flip Flops
 stateff: process (clk,reset)
 begin
 if (reset = ’1’) then
 cnta <= "001"; -- initialize both counters to ’1’
 cntb <= "001";
 elsif (clk’event and clk=’1’) then

if (roll = ’1’) then
 case cntb is

when "001" => cntb <= "010";
when "010" => cntb <= "011";
when "011" => cntb <= "100";
when "100" => cntb <= "101";
when "101" => cntb <= "110";
when "110" => cntb <= "001";
when others => cntb <= "001";

 end case;
 end if;

 if (en_a = ’1’) then
 case cnta is

when "001" => cnta <= "010";
when "010" => cnta <= "011";
when "011" => cnta <= "100";
when "100" => cnta <= "101";
when "101" => cnta <= "110";
when "110" => cnta <= "001";
when others => cnta <= "001";

 end case;
 end if;
 end if;
 end process stateff;

BR 1/99 14

- sum equations to add cnta + cntb
 -- sum = a xor b xor ci
 -- cout = (a and b) or Ci(a or b)

 -- bit 0, no carry in
 sum(0) <= cnta(0) xor cntb(0);
 c1 <= cnta(0) and cntb(0);

 -- bit 1, c1 is carry in
 sum(1) <= cnta(1) xor cntb(1) xor c1;
 c2 <= (cnta(1) and cntb(1)) or (c1 and (cnta(1) or cntb(1)));

 -- bit 2, c2 is carry in
 sum(2) <= cnta(2) xor cntb(2) xor c2;
 c3 <= (cnta(2) and cntb(2)) or (c2 and (cnta(2) or cntb(2)));

 -- bit 3 is carry3 since no counter bits
 sum(3) <= c3;
 end a;

“dpatha” adder equations.

We could have simply
written:

sum <= cnta + cntb;

This is a valid operation in
VHDL!

BR 1/99 15

Rb?

Ra?

D7 or D11?

Roll

D2312?

Sp

Rb?

Ra?

Eq? D7?

Roll

Lose

Win

0

1

0

1
1

0

0

0

0

0

0

1

1

1

11

S0

S1

S2

S4

S3
S5

Dice Game
ASM Chart

6

BR 1/99 16

VHDL for control
entity control is
 port (clk,reset: in std_logic;
 d7_i: in std_logic;
 d11_i: in std_logic;
 d2312_i: in std_logic;
 ra: in std_logic;
 rb: in std_logic;
 eq: in std_logic;
 sp: out std_logic;
 roll: out std_logic;
 win : out std_logic;
 lose: out std_logic;
 q0 : out std_logic;
 q1 : out std_logic;
 q4 : out std_logic;
 q5 : out std_logic
);

end control;

Used one-hot encoding.
Outputs q0, q1, lose,
win,q4, q5 correspond to
states S0, S1, S2, S3, S4,
S5.

The one hot equations were
written by inspection. The
VHDL file contains
boolean equations for DFF
inputs and ra,rb, eq,sp
outputs.

BR 1/99 17

architecture a of control is
 -- FFs for Finite State Machine
 signal q, d : std_logic_vector(5 downto 0);
begin

-- State Flip Flops
 stateff: process (clk,reset)
 begin
 if (reset = ’1’) then
 q <= "000001";
 elsif (clk’event and clk=’1’) then
 q <= d;
 end if;
 end process stateff;

 -- FF equations
 d(0) <= q(0) and (not rb);

 d(1) <= (q(0) and rb) or (q(1) and (not ra));

 d(2) <= q(2) or (q(1) and ra and (d7_i or d11_i))
 or (q(5) and ra and eq);

 d(3) <= q(3) or (q(1) and ra and (not d7_i) and
 (not d11_i) and D2312_i)
 or (q(5) and ra and (not eq) and (d7_i)) ;

 d(4) <= (q(1) and ra and (not d7_i) and
 (not d11_i) and (not D2312_i))
 or (q(4) and (not rb))
 or (q(5) and ra and (not eq) and (not d7_i));

 d(5) <= (q(4) and rb) or (q(5) and not ra);

 win <= q(2);
 lose <= q(3);

 q0 <= q(0);
 q1 <= q(1);
 q4 <= q(4);
 q5 <= q(5);
 sp <= q(1) and ra and (not d7_i) and
 (not d11_i) and (not d2312_i);

 roll <= (q(1) and (not ra)) or (q(5) and (not ra));
end a;

BR 1/99 18

Is there an easier way to do VHDL for a FSM?

• There is an easier way to write the VHDL for the
finite state machine code

• Will use a “case” statement for specifying the FSM
action
– Will generate the same boolean equations

– Will be more readable

• Will also use symbolic names for states (S0, S1,
etc)
– Can change state encoding very easily.

7

BR 1/99 19

architecture a of control_alt is

 -- FFs for Finite State Machine

 signal q, d : std_logic_vector(5 downto 0);
 constant S0: std_logic_vector(5 downto 0) := "000001";
 constant S1: std_logic_vector(5 downto 0) := "000010";
 constant S2: std_logic_vector(5 downto 0) := "000100";
 constant S3: std_logic_vector(5 downto 0) := "001000";
 constant S4: std_logic_vector(5 downto 0) := "010000";
 constant S5: std_logic_vector(5 downto 0) := "100000";

begin

-- State Flip Flops
 stateff: process (clk,reset)
 begin
 if (reset = ’1’) then
 q <= S0;
 elsif (clk’event and clk=’1’) then
 q <= d;
 end if;
 end process stateff;

Will define
symbolic names
for the states.

To use new state
encoding, only
have to change
definition of
symbolic names!

This uses one-hot
encoding.

BR 1/99 20

-- q is present state, d is next state.
 clogic: process (q, ra, rb, d7_i, d11_i, d2312_i)
 begin

 -- defaults
 win <= ’0’; lose <= ’0’;
 sp <= ’0’; roll <= ’0’;
 d <= q; -- default is to stay in same state.

 case q is
 when S0 => if (rb = ’1’) then d <= S1; end if;
 when S1 =>
 if (ra = ’1’) then
 if (d7_i = ’1’ or d11_i = ’1’) then
 d <= S3;
 elsif (d2312_i = ’1’) then
 d <= S2;
 else
 sp <= ’1’;
 d <= S4;
 end if;
 else
 roll <= ’1’;
 end if;

 when S2 => lose <= ’1’;
 when S3 => win <= ’1’;
 when S4 => if (rb = ’1’) then d <= S5; end if;
 when S5 =>
 if (ra = ’1’) then
 if (eq = ’1’) then
 d <= S3;
 elsif (d7_i = ’1’) then
 d <= S2;
 else
 d <= S4;
 end if;
 else
 roll <= ’1’;
 end if;
 when others => d <= S0;
 end case;
 end process clogic;

BR 1/99 21

architecture a of control_alt is

 -- FFs for Finite State Machine

 signal q, d : std_logic_vector(2 downto 0);
 constant S0: std_logic_vector(2 downto 0) := "000";
 constant S1: std_logic_vector(2 downto 0) := "001";
 constant S2: std_logic_vector(2 downto 0) := ”010";
 constant S3: std_logic_vector(2 downto 0) := "011";
 constant S4: std_logic_vector(2 downto 0) := ”100";
 constant S5: std_logic_vector(2 downto 0) := ”101";

begin

-- State Flip Flops
 stateff: process (clk,reset)
 begin
 if (reset = '1') then
 q <= S0;
 elsif (clk'event and clk='1') then
 q <= d;
 end if;
 end process stateff;

Symbolic names
changed to define a
binary counting order
encoding for States!

No other changes
necessary to code!!!

8

BR 1/99 22

Summary

• High level VHDL can let you describe digital systems
easier and faster. These descriptions are more
understandable to an external reader.

• Still MUST KNOW implications of a high level
VHDL statement -- ie. What gates get generated?
– Sum <= Cnta + Cntb; Easy to write, but what kind of

adder gets synthesized? There are many different ways to
build an adder, and each one has a different tradeoff in
terms of speed and gate count!

• Take EE 4743/EE 6743 to find out more about Digital
System design!

