
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What Good are Muxes ?? \qquad
Sometimes want to have a bus be driven from multiple blocks, where only one block is driving the bus at a time. \qquad

N to 1 mux will select 1 source; Select bus needs to be $\log 2(\mathrm{~N})$. Note that only ONE input can be selected at a time!

BR $8 / 99$

\qquad
\qquad

Logic for 2/1, 4/1 Muxes$\mathbf{Y}=\mathbf{1 0 ~} \mathbf{S}^{\prime}+\mathbf{1 1 ~ S}$			

\qquad

Tri State Buffer

There is another way to drive a line or bus from multiple sources. Use a TRISTATE buffer.

\qquad
\qquad

When $E N=1$, then $Y=A$.
When $\mathrm{EN}=0$, then $\mathrm{Y}=$? ?????
Y is undriven, this is called the high impedance state.
\qquad

Designate high impedance by a ' Z '.
When $E N=0$, then $Y={ }^{\prime} Z$ ' (high impedance) \qquad

BR 8/99
5

Using TriState Buffers \qquad
Can use tristate buffers instead of a combinational $2 / 1 \mathbf{m u x}$

Must make sure that ENA, ENB are not both
' 1 ' at same time, or Y will be driven from multiple sources
\qquad
\qquad
\qquad
\qquad
\qquad
BR 8/99 6 \qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Logic common to both of the previous mux implementations was the decoder function.
1 to 2 decoder
BR $8 / 99 \longrightarrow 9$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{A}$ xor B xor $\mathrm{C} \quad \mathrm{G}=\mathrm{AB}+\mathrm{AC}+\mathrm{BC}$

0	0	0	0
0	0	1	1

0	0	1	1	0
0	1	0	1	0

0	1	1	1	0
1	0	0	1	0

$\begin{array}{llllll}1 & 0 & 1 & 0 & \text { LookUp Table (LUT) }\end{array}$
$\mathrm{A}[2: 0]$ is 3 bit addres
bus, $\mathrm{D}[1: 0]$ is 2 bit
output bus.
Recall that Exclusive OR (xor) is
Location 0 has " 00 ",

14
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Binary Adder \qquad
$\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\mathbf{A}$ xor $\mathbf{B} \operatorname{xor} \mathbf{C} \quad \mathbf{G}=\mathbf{A B}+\mathbf{A C}+\mathbf{B C}$
These equations look familiar. These define a Binary Full
\qquad Adder :

\qquad
\qquad
\qquad

BR $8 / 99$
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What do You have to know?

\qquad

- Structures for Muxes, Decoders, Ripple Carry adder, Incrementer
- What a tristate buffer is
- How to build muxes from all combinational logic or from combinational logic + tristate buffers
- Bus naming convention
- How to build N -bit wide elements from 1-bit wide elements
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

