
1

BR 8/99 1

Boolean Algebra

• Basic mathematics for the study of logic design is
Boolean Algebra

• Basic laws of Boolean Algebra will be
implemented as switching devices called logic
gates.

• Networks of Logic gates allow us to manipulate
digital signals
– Can perform numerical operations on digital signals

such as addition, multiplication
– Can perform translations from one binary code to

another.

BR 8/99 2

Boolean Variables, Functions

• A boolean variable can take on two values
– Will use the values ‘0’ and ‘1’
– Could just as easily use ‘T’, ‘F or H,L or ON,OFF

• Boolean operations transform Boolean Variables.
– Basic operations are NOT, AND, OR

• We can make more complicated Boolean
Functions from the basic boolean operations

BR 8/99 3

NOT operation

A Y
0 1
1 0

Truth Table

The NOT operation (or inverse, or complement operation) replaces a
boolean value with its complement:

0’ = 1 , 1’ = 0

A’ is read as NOT A or Complement A

A A’ Inverter symbol

F(A) = A’ boolean representation

BR 8/99 4

AND operation
The AND operation is a function of two variables (A, B)

F(A,B) = A • B boolean function representation

When both A and B are ‘1’, then F is ‘1’.

0 • 0 = 0, 0 • 1 = 0, 1 • 0 = 0, 1 • 1 = 1

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Truth Table AND
A

B
F

BR 8/99 5

AND operation (cont).
Will usually drop the ‘• ‘ in the equation and just write the equation
as:

F(A,B) = AB boolean function representation

Can also view AND operation as two switches in series:

Switch Open (0)

Switch Closed (1)

A B When Switch A closed (1)
and Switch B closed (1),
circuit is closed (1)

BR 8/99 6

OR operation
The OR operation is a function of two variables (A, B)

F(A,B) = A + B boolean function representation

When either A or B are ‘1’, then F is ‘1’.

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 1

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

Truth Table

OR

2

BR 8/99 7

OR operation (cont).
Can view OR operation as two switches in parallel:

Switch B closed (1), so circuit is
closed (1)

A

B
Neither switch A or switch B is
closed, so circuit is open (0)

B

A

Switch A closed (1), so circuit is
closed (1)B

A

Switch A or Switch B is closed,
circuit is closed (1)B

A

BR 8/99 8

Boolean Functions
More complex boolean functions can be created by combining
basic operations

OR
A A’

B
F(A,B) = A’ + B

A B A’ F = A’ + B
0 0 1 1
0 1 1 1
1 0 0 0
1 1 0 1

BR 8/99 9

Basic Theorems

X + 0 = X
X + 1 = 1

X * 1 = X
X * 0 = 0

Duals

X + X = X X * X = X

(X’)’ = X (X’)’ = X

X + X’ = 1 X * X’ = 0

BR 8/99 10

Duality

A dual of a boolean expression is formed by replacing
ANDs with ORs, ORs with ANDs, ‘1’s with ‘0’s, and
‘0’s with ‘1’s. Variables and their complements are left
alone.

If two boolean expressions are equal, then their duals are
equal!

Helpful in remembering boolean laws. Only need to
remember one set, can generate the 2nd set by taking the
dual!

BR 8/99 11

Proving a Theorem

How do we prove X + 0 = X is correct?

One way is to replace all boolean variables with values of ‘0’, ‘1’
and use basic operations:

For X = 0, 0 + 0 = 0 For X = 1, 1 + 0 = 1
0 = 0 1 = 1

So, X + 0 = X is valid.

Prove X + X’ = 1

For X = 0, 0 + (0)’ = 1 For X = 1, 1 + (1)’ = 1
0 + 1 = 1 1 + 0 = 1

1 = 1 1 = 1

So, X + X’ = 1 is valid.
BR 8/99 12

Commutative, Associative Laws

X + Y = Y + X X * Y = Y * X

Dual Laws

(X + Y) + Z = X + (Y + Z)

Commutative

Associative

(XY) Z = X(YZ)

Associative

If ‘+’ is viewed as addition, and ‘*’ as multiplication, then the
Commutative, Associative laws in normal algebra are the same as
in boolean algebra.

3

BR 8/99 13

Three Input AND Function
A
B

F = ABC = (AB) C = A (BC)

C

A B C AB F = ABC
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 0 0
1 0 0 0 0
1 0 1 0 0
1 1 0 1 0
1 1 1 1 1

BR 8/99 14

Distributive Law

A(B + C) = AB + AC (valid in normal algebra)

Dual:

A + BC = (A + B) (A + C) (only valid in Boolean algebra!)

Note that the 2nd form is NOT valid in normal algebra! This
tends to make one forget about it. Remember the first form,
then take the DUAL of it to get the second form.

BR 8/99 15

Prove A + BC = (A + B) (A + C)
Use Truth Table method for both sides

A B C BC A+BC A+B A+C (A+B)(A+C)
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1
1 0 1 0 1 1 1 1
1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1

Results are same
BR 8/99 16

Other Simplification Theorems

XY + XY’ = X (X +Y)(X+Y’) = X

Duals

X + XY = X

(X + Y’)Y = XY

X(X + Y) = X

XY’ + Y = X + Y

Prove XY + XY’ = X via algebraic manipulation

XY + XY’ = X (Y + Y’) = X (1) = X !!!!!

BR 8/99 17

Simplification
• Simplification tries to reduce the number of terms in a

boolean equation via use of basic theorems
• A simpler equation will mean:

– less gates will be needed to implement the equation
– could possibly mean a faster gate-level implementation

• Will use algebraic techniques at first for simplification
– Later, will use a graphical method called K-maps
– Computer methods for simplification are widely used in industry.

BR 8/99 18

Sum Of Products (SOP) Form

A boolean expression is in Sum Of Products form when all
products are the products of single variables only.

F = AB’ + CD’E + AC’E’ (SOP Form)

G = ABC’ + DEFG + H (SOP Form)

Y = A + B’ + C + D (SOP Form)

Z = (A+B)CD + EF Not SOP Form

= ACD + BCD + EF SOP Form

4

BR 8/99 19

Use Distributive Law for Multiplying
Problem: Put into SOP form the following equation and
simplify:

(A + BC) (A + D + E)
Try just straightforward multiplication of terms:

AA + AD + AE + ABC + BCD + BCE

Simplify (AA = A):
A + AD + AE + ABC + BCD + BCE

Look for simplification via factoring:
A(1 + D + E + BC) + BCD + BCE

A (1) + BCD + BCE

A+ BCD + BCE !!!!!!!!! (Final SOP form)

BR 8/99 20

Use 2nd Distributive Law
Recall 2nd Distributive Law:

(X + Y)(X + Z) = X + YZ
Lets try and use this law, may make things easier:

(A + BC) (A + D + E)
(A + (BC)) (A + (D + E))

Apply 2nd Distributive Law:

A + BC (D + E)
Multiply Out:

A + BCD + BCE (Final SOP form)

Finished!!

BR 8/99 21

A + BCD + BCE as logic gates
B
C
D

B
C
E

A

SOP can be implemented in two levels of logic assuming
that both a variable (A) and its complement (A’) are
available (Dual Rail Inputs). SOP is a TWO-LEVEL form
(AND-OR)

AND-OR form

BR 8/99 22

Product of Sums (POS) Form
A boolean expression is in Product Of Sums form when all
sums are the sums of single variables.

F = (A + B’)(C + D’ + E)(A + C’ + E’) (POS Form)

G = A (B + E)(C + D) (POS Form)

Y = AB + AC Not POS Form
= A (B + C) POS Form

BR 8/99 23

Factoring
Use factoring to get to Product of Sums form.

Use basic theorem:

X + YZ = (X + Y) (X + Z) (just reverse of distributive law)

Problem: Put A + B’CD into POS Form:

A + B’CD = (A + B’) (A + CD)

= (A + B’) (A + C) (A + D)

(A + B’) (A + C) (A + D) is final POS form!!!!

BR 8/99 24

(A+B’)(A+C)(A+D) as Logic Gates
A

B’

A

C

A

D

POS can be implemented in two levels of logic assuming
that both a variable (A) and its complement (A’) are
available (Dual Rail Inputs). POS is a TWO-LEVEL form
(OR-AND form)

OR-AND form

5

BR 8/99 25

Consensus Theorem
Consensus theorem states:

XY + X’Z + YZ = XY + X’Z

The YZ term is called the consensus term and is
redundant. The consensus term is formed from a PAIR
OF TERMS in which a variable (X) and its complement
(X’) are present; the consensus term is formed by
multiplying the two terms and leaving out the selected
variable and its complement.

The consensus of XY, X’Z is YZ .

BR 8/99 26

Prove the Consensus Theorem

Consensus Theorem Proof:

XY + X’Z + YZ = XY + X’Z + (X + X’)YZ
= XY + X’Z + XYZ + X’YZ
= (XY + XYZ) + (X’Z + X’YZ)
= XY (1 + Z) + X’Z (1 + Y)
= XY + X’Z

You could also use a truth table to prove this.

BR 8/99 27

Dual of the Consensus Theorem

(X+Y) (X’ + Z) (Y + Z) = (X + Y) (X’ + Z)

The consensus of (X+Y)(X’+Z) is (Y + Z) .

How do you use the consensus theorem? Simply be
suspicious anytime you have two terms that have a variable
and its complement. Form the consensus term and see if it is
present; if consensus term is present, just get rid of it.

BR 8/99 28

Short Cuts for Multiplying

A short cut theorem for Distribution (Multiplication)

(X + Y) (X’ + Z) = XZ + X’Y

Only works when you have a variable (X) and its complement
(X’). To PROVE this, lets do the distribution the long way.

(X + Y)(X’ + Z) = X X’ + XZ + X’Y + YZ

0 Redundant by
consensus theorem

= 0 + XZ + X’Y = XZ + X’Y

BR 8/99 29

DeMorgan’s Laws
DeMorgan’s Laws provide an easy way to find the inverse of
a boolean expression:

(X + Y)’ = X’ Y’
(XY)’ = X’ + Y’

An easy way to remember this is that each TERM is
complemented, and that ORs become ANDs; ANDs
become ORs.

Easy to prove this via a truth table, see textbook.

BR 8/99 30

Applying DeMorgan’s Law

Apply DeMorgan’s Law to a more complex expression:

(AB + C’D)’ = (AB)’ (C’D)’
= (A’+B’)(C + D’)

Note that DeMorgan’s law was applied twice.

Another example:

[(A’ + B)C’]’ = (A’ + B)’ + (C’)’
= (A’)’ (B)’ + C
= AB’ + C

6

BR 8/99 31

NAND, NOR Gates
Why do we care about DeMorgan’s Law?

There are two other gate types that produce the complement
of a boolean function!

A

B

(AB)’

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

NAND

A

B

(A+B)’

NOR

A B Y
0 0 1
0 1 0
1 0 0
1 1 0

BR 8/99 32

NAND, NOR (cont.)
NAND (NOT AND) - can be thought of as an AND gate
followed by an inverter.

A

B
AB (AB)’

A

B

(AB)’

NAND

NOR (NOT OR) - can be thought as an OR gate followed
by an inverter.

A

B

A+B (A+B)’A

B

(A+B)’

NOR

BR 8/99 33

Actually….
In the real world, an AND gate is made from an NAND gate
followed by an inverter!!!

An OR gate is made from a NOR gate followed by an inverter!!!

A

B

(AB)’

NAND

AB A

B

AB

AND

A

B

(A+B)’

NOR

A+B A

B

A+B

OR

BR 8/99 34

What is this logic function in SOP form?

A

B

(AB)’

C

D (CD)’

F = ((AB’) (CD)’)’

Hmmmmmmmm…. Lets use DeMorgan’s Law

F = ((AB)’(CD)’)’ = ((AB)’)’ + ((CD)’)’ = AB + CD !!!!

An interesting result…... SOP Form!!

BR 8/99 35

NAND-NAND form = AND-OR form
A

B

(AB)’

C

D (CD)’

F = ((AB’) (CD)’)’

A

B

(AB)

C

D (CD)

F = AB + CD

Same logic function

BR 8/99 36

What is this logic function in POS form?
A

B
(A+B)’

C

D
(C+D)’

F= ((A+B)’ + (C+D)’)’

Hmmmmmmmm…. Lets use DeMorgan’s Law

F = ((A+B)’ + (C+D)’)’
= ((A+B)’)’ ((C+D)’)’ = (A+B) (C+D) !!!!!

An interesting result…... POS Form!!!

7

BR 8/99 37

NOR-NOR form = OR-AND form

A

B
(A+B)’

C

D
(C+D)’

F= ((A+B)’ + (C+D)’)’

A

B
(A+B)

C

D
(C+D)

F= (A+B)(C+D)

Same logic function

BR 8/99 38

Two Level Form Summary

Any logic function in SOP form (Sum of Products) can be
implemented in the two level gate forms of AND-OR,
NAND-NAND.

Any logic function in POS form (Product of Sums) can be
implemented in the two level gate forms of OR-AND, NOR-
NOR.

There are actually FOUR more two level gate forms but we will
not talk about these.

BR 8/99 39

XOR Function
One last gate type is the XOR Gate (Exclusive OR gate).

A

B
F = A � B

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

XOR

XOR gate is usual in logic circuits that do
binary addition/subtraction.

Note that:
F = A � B

= A’B + AB’

BR 8/99 40

What do you need to know?
• Basic Boolean Theorems
• Proving boolean theorems (algebraically, truth

table)
• Duality
• Boolean equation to gate network and vice-versa
• Algebraic Simplification
• Consensus Theorem, De’Morgans Laws
• SOP form, POS form
• Two level forms AND-OR, NAND-NAND, OR-

AND, NOR-NOR
• XOR Gate

