Arithmetic Operations

- We will review the arithmetic building blocks we have previously used, and look at some new ones.
- Addition
- incrementer
- Addition/subtraction
- decrementer
- Comparison

Binary Adder

\qquad
$\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\mathbf{A}$ xor $\mathbf{B} \operatorname{xor} \mathbf{C} \quad \mathbf{G}=\mathbf{A B}+\mathbf{A C}+\mathbf{B C}$
These equations look familiar. These define a Binary Full Adder :

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

How did we get the Incrementer equations?
Full Adder equations: \qquad
Sum = A xor B xor Cin
Cout $=A B$ or $\mathbf{C i n} A$ or Cin B
$=A B$ or $C i n(A$ or $B)$
\qquad

Let $\mathrm{B}=0, \mathrm{Cin}=1$ so that $\mathrm{Sum}=\mathrm{A}+1$. Then equations simplify to: SUM = A xor 1 xor $0=A$ xor $1=A$,
Cout $=0$ or $1(A$ or 0$)=A$.
If we want an "En" input, then we want $S U M=A$ if $E n=0$, else $S U M=$ $\mathbf{A}+1$ if $\mathbf{E n}=$ ' 1 '. Filling in the above equations:

SUM $=\mathbf{A}$ En' or $\mathbf{A}^{\prime} \mathbf{E n}=\mathbf{A}$ xor En
Cout $=A$ En $\quad($ note that $\operatorname{Cout}=0$ if $E n=0)$.
The "Cout" of one bit becomes the "En" signal for the next bit!!!!
\qquad
\qquad
\qquad
\qquad

BR 8/99
A Subtractor
What is subtraction?
A $-\mathrm{B}=\mathrm{A}+(-\mathrm{B})$

How do you take the negative of a number? Depends on the
sign representation (signed magnitude, 1s complement, 2s
complement). Lets assume 2's complement since it is most
common).
$(-\mathrm{B})=\mathrm{B}^{\prime}+1$
So:
$\mathrm{A}-\mathrm{B}=\mathrm{A}+(-\mathrm{B})=\mathrm{A}+\mathrm{B}^{\prime}+1$
BR 8999

What if we want a block that can do both addition and subtraction?
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Recall what a Comparator is...
Equality comparator.

\qquad
\qquad
$\mathrm{A}=\mathrm{B}$ if $\mathrm{A}(0)=\mathrm{B}(0)$ and $\mathrm{A}(1)=\mathrm{B}(1) \ldots$ and $\mathrm{A}(\mathrm{n}-1)=\mathrm{B}(\mathrm{n}-1)$
Recall that "xnor" function is ' 1 ' if $\mathrm{A}=0, \mathrm{~B}=0$ or $\mathrm{A}=1, \mathrm{~B}=1$! So AeqB is:

AeqB $=(\mathrm{A}(0)$ xnor $\mathrm{B}(0))$ and $(\mathrm{A}(1)$ xnor $\mathrm{B}(1))$ andetc.

BR 8199

\qquad

Is there another Logic structure possible? \qquad
Compare "iteratively" from LSB to MSB
If $(\mathrm{A}(0)=\mathrm{B}(0)$ then
if $(A(1)=B(1)$ then

$$
\text { If }(\mathrm{A}(\mathrm{~N}-1)=\mathrm{B}(\mathrm{~N}-1) \text { then }
$$

AeqB $={ }^{'} 1$ '; !!!!!

Signal from one bit block to next is "enable" for that block. BR 8/99

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

What about "く" (less than), ">" (greater than?)

Full comparator.

The logic for AltB, AgtB depends on whether we are comparing signed numbers or not. We will assume unsigned numbers for now.

Logic for "AgtB" (unsigned)

\qquad
Consider $\mathrm{A}>\mathrm{B}$, both N bit numbers, $\mathrm{A}[\mathrm{N}-1: 0], \mathrm{B}[\mathrm{N}-1: 0]$
If $\left(\mathrm{A}(\mathrm{N}-1)=' 1\right.$ ' and $\left(\mathrm{B}(\mathrm{N}-1)={ }^{\prime} 0\right.$ ') then
$\mathrm{AgtB}={ }^{\prime} 1$ '; $\longleftarrow \mathrm{A}=1 \mathrm{xxx} \ldots \mathrm{B}=0 \mathrm{xxxxx}$
elsif $\left((\mathrm{A}(\mathrm{N}-1)=\mathrm{B}(\mathrm{N}-1))\right.$ and $\left(\mathrm{A}(\mathrm{N}-2)={ }^{\prime} 1\right.$ ' and $\left(\mathrm{B}(\mathrm{N}-2)={ }^{\prime} 0\right.$ ')) then
AgtB = ' 1 '; ;

$\begin{array}{ll}A=01 x x \ldots & B=00 x x x x \\ A=11 x x & B=10 x x x x\end{array}$
etc... $\begin{array}{lll}\mathrm{A}=11 \mathrm{xx} \ldots & \mathrm{B}=10 \mathrm{xxxx}\end{array}$
Look at "bit(i)". The enable signal from previous bit is
$A=B$ up until now. If this is ' 1 ', then we need to do a comparison.

However, if "AgtB" is already true, then we don't need to do comparison and can skip this $\underset{\text { BR } 899}{\text { comparison! }}$

\qquad

Logic Implementation

en_o $=(\mathrm{A}$ xnor B$)$ and en_i;
Can use a K-map to simplify this
If (skip_i = ' 1 ') the
else
skip_o = en_i and (A and B'); end if;
skip_i \qquad

The skip_o of the LAST bit is the AgtB signal!

The $e n _o$ of the LAST bit is the AeqB signal! What about AltB???
AltB $=A g t B$ ' and AeqB ${ }^{\prime}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BR 8/99 \qquad

\qquad

\qquad

architecture a of comp is signal en, skip: std_logic_vector(8 downto 0);	
begin	
```aeqb <= en(0); agtb <= skip(0); altb <= (not en(0)) and (not skip(0)); process (a,b)```	VHDL architecture that implements comparator logic as shown on previous slides.
begin $\text { en }(8)<=\text { ' } 1 \text { '; skip }(8)<=\text { '0'; }$	
```for i in }7\mathrm{ downto 0 loop en(i)<= not (a(i) xor b(i)) and en(i+1); if (skip(i+1) = '1') then skip(i) <= '1';```	
```else skip(i) <= en(i+1) and (a(i) and not b(i)); end if; end loop; end process;```	
end a; BR 8/99	


Alternate VHDL specification	
architecture a of compa is	
$\begin{aligned} & \text { begin } \\ & \text { aeqb <= '1' when }(\mathrm{a}=\mathrm{b}) \text { else ' } 0 \text { '; } \\ & \text { agtb <= '1' when }(\mathrm{a}>\mathrm{b}) \text { else ' } 0 \text { '; } \\ & \text { altb < = ' } 1 \text { ' when }(\mathrm{a}<\mathrm{b}) \text { else ' } 0 \text { '; } \end{aligned}$	Synthesis tool will pick a logic implementation for implementation of ' $=$ ', '>', '<' based on user constraints such as propagation delay.
end a;	
BR $8 / 99$	



