
2 April, 1997 OO-VHDL — VIUF Spring '97 1

Considerations on
Object-Oriented Extensions to

VHDL

Peter J. Ashenden
University of Adelaide

Visiting Scholar at U. Cincinnati

Philip A. Wilsey
University of Cincinnati

2 April, 1997 OO-VHDL — VIUF Spring '97 2

OO or High-Level Modeling?

• Need to better support high-level modeling
– specify data and behavior in a more abstract

manner

• OO is part of that, not a panacea

• VHDL is already “object-based”

• Need to improve facilities
– abstraction, encapsulation, concurrency and

communication

2 April, 1997 OO-VHDL — VIUF Spring '97 3

Extension Principles

• Focus on semantics
– syntax follows

• Aim for simplicity and orthogonality
– clear interactions between features

• Integrate: maintain conceptual integrity
– build on existing language features and

philosophy

2 April, 1997 OO-VHDL — VIUF Spring '97 4

A Rough Taxonomy

• Data modeling
– programming language ideas

• Structure modeling
– inheritance of generics/ports in entities,

concurrent statements in architectures

• System-level modeling
– e.g., before hardware/software partitioning

2 April, 1997 OO-VHDL — VIUF Spring '97 5

Separation of Concerns

ENTITIES

ENTITIES

C
O

N
C

U
R

R
E

N
C

Y
C

O
N

C
U

R
R

E
N

C
Y

OO FEATURES

OO FEATURES

2 April, 1997 OO-VHDL — VIUF Spring '97 6

Concurrency

• Extend existing concurrency and
communication features
– e.g., dynamic creation of processes

– e.g., abstract communication
• message passing, RPC/rendezvous

• Monitors are insufficient
– they are just concurrency control for

encapsulated data

2 April, 1997 OO-VHDL — VIUF Spring '97 7

Concurrency Example

type elevator_class is class

channel elevator_call : in floor_number;
channel elevator_location : out floor_number;

elevator : process is
. . .

begin
. . .
receive calling_floor from elevator_call;
send current_floor to elevator_location;
. . .

end process;

end class;

2 April, 1997 OO-VHDL — VIUF Spring '97 8

Data Modeling

• “Programming by extension” à la Ada-95

• Class-based à la C++

• What about signal objects?
– use class-provided variable assignment and

equality for signal assignment and update

2 April, 1997 OO-VHDL — VIUF Spring '97 9

Data Modeling Example

type complex is class

private variable re, im : real;

public procedure “:=” (c : complex);

public function “=” (right : complex)
return boolean;

. . .
end class;

signal s1, s2 : complex;

s1 <= complex(0.0, 1.0);

wait on s2;

2 April, 1997 OO-VHDL — VIUF Spring '97 10

Encapsulation: Private Parts

CENSORED

2 April, 1997 OO-VHDL — VIUF Spring '97 11

Genericity

• c.f. template functions and classes in C++

• c.f. generics in Ada

• Example:
entity shift_reg is

generic (type item is private;
type index is (<>);
type vector is array (index) of item);

port (shift_clk : in bit; data_in : in item;
data_out : out vector);

end entity;

2 April, 1997 OO-VHDL — VIUF Spring '97 12

Synthesis

• Don’t forget it!

• Behavioral synthesis

• Hardware/software co-synthesis

• Use of new features across the modeling
spectrum

2 April, 1997 OO-VHDL — VIUF Spring '97 13

Conclusions

• Simple, regular extensions in keeping with
existing language

• Carefully analyze alternatives and consider
interactions

• Need to take a holistic view

• OO is part of the picture, not all of it

