
Copyright 1998 IEEE. Published in the Proceedings of the Hawai’i International Conference On System Sciences, January 6- 9, 1998, Kona, Hawaii.
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained
from the IEEE. Contact: Manager, Copyrights and Permissions/IEEE Service Center/445 Hoes Lane/P.O. Box 1331/Piscataway, NJ 08855- 1331, USA.
Telephone: + Intl. 908- 562- 3966.

A Comparison of Alternative Extensions for Data Modeling in VHDL

Peter J. Ashenden
Dept. Computer Science

The University of Adelaide, SA 5005
Australia

petera@cs.adelaide.edu.au

Philip A. Wilsey
Dept. ECECS, PO Box 210030

University of Cincinnati
Cincinnati, OH 45221- 0030,USA

phil.wilsey@uc.edu

Abstract
A number of proposals for object-oriented extensions to
VHDL deal with object-oriented extensions to support
high-level modeling of data. They provide features for ex-
pressing data abstraction, encapsulation, and inheritance
with polymorphism— features that are central to object ori-
ented techniques. There are two approaches to object-ori-
ented data modeling: class-based and programming by
extension. This paper compares the two approaches in the
context of hardware modeling in VHDL. It outlines the two
approaches and presents examples illustrating how they
might be included in VHDL. It discusses the issue of in-
tegration with signal semantics, and compares how the ap-
proaches deal with encapsulation, initialization of objects,
and inheritance. The paper concludes that, while both ap-
proaches are viable, the programming by extension ap-
proach is preferred.

1. Introduction
As the complexity of digital systems increases, designers
are becoming more reliant on high-level modeling as a
stage in the design flow. High-level modeling involves be-
havioural descriptions that use abstract representations of
the data manipulated by the system. The focus is on captur-
ing the required functionality of the system without com-
mitting to implementation details, such as binary encoding
of data and communication protocols between compo-
nents.

* This work was partially supported by Wright Laboratory un-
der USAF contract F33615- 95- C- 1638.

For a hardware description language to be used success-
fully for high-level modeling, it must provide appropriate
features for managing the complexity in a design. The soft-
ware-engineering community has adopted object-oriented
techniques as the means of managing complexity in soft-
ware systems [4]. Since the task of high-level modeling us-
ing a hardware description language is very similar to
software development, it is appropriate to consider
introduction of object-oriented features into a hardware de-
scription lanugage such as VHDL [9].

A number of proposals for object-oriented extensions to
VHDL have been published, and are surveyed by Ashen-
den and Wilsey [1, 2]. A number of the proposals [6, 11,
13, 14, 16] deal with object-oriented extensions to support
the modeling of data. They provide features for expressing
data abstraction, encapsulation, and inheritance with poly-
morphism— features that are central to object oriented
techniques.

There are two main approaches to introduce object-ori-
ented data modeling into VHDL: class-based and pro-
gramming by extension. The proposals of Radetzki et al
[13] and Willis et al [16] are class-based, whereas those of
Dunlop [6], Mills [11], and Schumacher and Nebel [14]
are based on programming by extension.

This paper compares the two approaches in the context
of hardware modeling in VHDL. Section 2 outlines the two
approaches and presents examples illustrating how they
might be included in VHDL. Section 3 then discusses the
issue of integration with signal semantics. The next three
sections compare the way in which the approaches deal
with issues relating to object-oriented modeling of data:
Section 4 compares encapsulation, Section 5 compares in-
itialization of objects, and Section 6 compares inheritance.
Section 7 presents the conclusion that, while both ap-
proaches are viable, the programming by extension ap-
proach is preferred.

2. Outline of the two approaches

2.1 The class-based approach

The class-based approach is influenced by programming
languages such as Simula [5], Smalltalk [7], C++ [15] and
Java [8], where a specific language construct to encapsu-
late state and operations is defined (a class). Derived
classes inherit state and operations from superclasses, with
possible augmentation or modification. An object is an
instance of a class, and contains storage for the state speci-
fied in the class. Depending on the language, the state may
or may not be directly accessed. It may be strongly encap-
sulated, in which case only the operations of the class may
access the state of an instance. Operations are typically
represented as subprograms that have an object instance as
an implicit parameter. Invoking an operation involves
identifying both the operation and the object upon which
the operation is to be performed.

In a conventional programming language, this model of
classes and objects is quite workable. Such languages only
have one kind of object, namely one that is an abstraction
of a machine storage location. Such an object can be read
and the retrieved value used in an expression. An object
can also be assigned a value, in which case the stored state
is immediately updated and subsequent reads return the up-
dated value.

One of the main issues in a class-based object-oriented
programming language is how to deal with assignment and
equality. In general they cannot be predefined; that is, the
semantics intended by the programmer may be different
from simple shallow copy and element-wise comparison.
Further, if the state includes dynamically allocated storage,
overwriting an object that is the target of assignment may
be undesirable. To do so creates garbage that, in many run-
time environments, is irretrievable. C++ deals with these
problems by requiring the programmer to include construc-
tor and descructor functions in a class.

As an example of how a class-based extension to VHDL
might be used, consider an ADT for complex numbers.

type complex is class

private variable re, im: real;

public function real_part return real is
begin

return re;
end function real_part;

public function imag_part return real is
begin

return im;
end function imag_part;

public procedure complex
(new_re : real; new_im : real := 0.0)
return complex is

begin
re := new_re; im := new_im;

end procedure complex;
public procedure “:=”(value : in complex) is
begin

re := value.re; im := value.im;
end procedure “:=”;
public function “=”(right : in complex)

return boolean is
begin

return re = right.re and im = right.im;
end function “=”;
public function “+”(right : in complex)

return complex is
begin

return complex (re + right.re, im + right.im);
end function “+”;
... - - other arithmetic operations
public procedure clear_to_zero is
begin

re := 0.0; im := 0.0;
end procedure clear_to_zero;

end class complex;

In this particular example, shallow-copy assignment
and element-wise comparison would suffice. However,
user-defined operations are shown to illustrate the possible
mechanism. The procedure complex is intended to be a
constructor, allowing creation of anonymous complex val-
ues. For example:

constant c_zero : complex := complex(0.0, 0.0);
constant c_1 : complex := complex(1.0);
constant c_i : complex := complex(0.0, 1.0);

Examples of instantiation of the class are shown later in
Section 3.

2.2 The programming by extension approach

Several of the proposals for object-oriented extensions to
VHDL follow the approach of Ada-95 [10]; the approach
used by Oberon-2 [12] is similar. The Ada-95 approach is
based on extensible tagged record types defined in pack-
ages. A package contains the declaration of a tagged record
type and the primitive operations for the type. The primi-
tive operations include one or more parameters of the de-
clared type, or have a function result of the declared type.
In the same (or another) package, a new tagged record type
is derived from the original type. The new type inherits the
elements of the original type and optionally adds further
elements. The primitive operations from the original type
are also inherited for the new type. They may be overrid-

den with alternate versions and additional primitive opera-
tions may also be added.

Rather than defining a class which encapsulates a stored
object, the Ada-95 approach allows definition of an ab-
stract data type class. The user then creates objects which
belong to the abstract data type and invokes operations de-
fined for the type, supplying the object as an actual parame-
ter. If the concrete details of the type are made private
within the defining package, the user may generally only
manipulate the object using the defined operations. The as-
signment operation is predefined, implementing shallow
copy of record elements. If that is inappropriate, the type
may be made limited, in which case assignment is not al-
lowed and the type definition must include operations to
copy objects. In the Ada-95 approach, the equality opera-
tor is also predefined, implementing element-wise com-
parison. If that is inappropriate, the type definition can
include an overloaded equality operator.

As an example, consider the complex number type re-
cast as an ADT using the programming by extension ap-
proach. (The type in this example is not tagged, since
inheritance is not relevant.)

package complex_numbers is
type complex is private;
function real_part (c : in complex) return real;
function imag_part (c : in complex) return real;
function make_complex

(new_re : real; new_im : real := 0.0)
return complex;

function “=”(left, right : in complex) return boolean;
function “+”(left, right : in complex) return complex;
... - - other arithmetic operations
procedure clear_to_zero

(variable c : out complex);
procedure clear_to_zero (signal c : out complex);

private
type complex is record

re, im : real;
end record complex;

end package complex_numbers;

Note that the current VHDL rules for overloading pre-
vent the two declarations of clear_to_zero as shown, since
they are considered to be homographs [9, §10.3]. A pos-
sible extension assumed here is to take account of the class
of parameters in determining homographs. Since a formal
variable parameter can only be associated with a variable,
and a formal signal parameter can only be associated with
a signal, the context is sufficient to resolve the overloading.

A possible package body for the ADT is:

package body complex_numbers is
function real_part (c : in complex) return real is
begin

return c.re;
end function real_part;
function imag_part (c : in complex) return real is
begin

return c.im;
end function imag_part;
function make_complex

(new_re : real; new_im : real := 0.0)
return complex is

begin
return (new_re, new_im);

end procedure make_complex;
function “=”(left, right : in complex)

return boolean is
begin

return left.re = right.re and left.im = right.im;
end function “=”;
function “+”(left, right : in complex)

return complex is
begin

return (left.re + right.re, left.im + right.im);
end function “+”;
... - - other arithmetic operations
procedure clear_to_zero

(variable c : out complex) is
begin

c := (0.0, 0.0);
end procedure clear_to_zero;
procedure clear_to_zero (signal c : out complex) is
begin

c <= (0.0, 0.0);
end procedure clear_to_zero;

end package body complex_numbers;

In this particular example, element-wise comparison
would suffice. However, a user-defined operation is shown
to illustrate the possible mechanism.

The function make_complex is intended to be a
constructor, allowing creation of anonymous complex val-
ues. For example:

constant c_zero : complex := make_complex(0.0, 0.0);
constant c_1 : complex := make_complex(1.0);
constant c_i : complex := make_complex(0.0, 1.0);

Examples of instantiation of the class are shown in Section
3 below.

3. Integration with signals
One of the main ideas of a class is to define an ADT. It
would seem reasonable to want to use ADT values as val-
ues for signals. The problems in doing so stem from the fact

that signals in VHDL represent a different kind of storage
object from variables and have quite different semantics.
Whereas a variable stores a single value of a given type, a
signal is much more complicated. It involves one or more
drivers, each of which stores a trajectory of values for the
current and future times. Existing language features relat-
ing to signals are:

SSignal assignment: requires a value of the signal’s type,
a delay time value, a pulse rejection time value and
selection between transport and inertial delay mecha-
nisms. Multiple waveform elements can be decom-
posed into a sequence of signal assignments each with
one waveform element. Assignment involves a process
of editing the trajectory for a driver.

SSignal update: involves determining driving values on
a net (invoking resolution functions, type conversions
and conversion functions towards the root of the net),
then determining effective values (invoking type con-
versions and conversion functions away from root).

STransactions and events: a transaction involves updat-
ing a signal with a newly determined effective value; if
the new value is not equal to the old value, an event oc-
curs. (Requires implicit assignment to update effective
value, and implicit call of an equality operator to test for
an event.)

SSensitivity: involves a process specifying a signal upon
which it may wait for an event.

3.1 Using a class for signal objects

The difficulty arising in the class-based approach is inte-
grating a class-based ADT with the existing mechanisms
relating to signals. An initial attempt at relating classes and
signals might be to allow a class to encapsulate signals. For
example:

type complex is class

private signal re, im : real;

... - - operations on a complex signal

end class complex;

The problem here is that a user of the class should only be
permitted to declare signals of this type:

signal c : complex;

If the user wanted to declare variables of the type, they
would have to declare a separate class to encapsulate vari-
ables. Mixing signal and variable objects would become
unwieldy. For example, for a model to assign to a complex
signal the sum of a complex signal value and a complex

variable value would require several operations in each of
the two classes to handle the different kinds of operands.

A better way of integrating ADT classes with signals is
to require a class to have its encapsulated state specified as
a variable, but to treat the variable as an abstract storage ob-
ject. If the class is instantiated as a variable object, the val-
ue of the encapsulated state forms the value of the variable
object (as in a conventional programming language). If the
class is instantiated as a signal object, the value of the en-
capsulated state forms the value of a transaction in a driver.
In this case, the class would have to provide value assign-
ment, equality, and deallocation operations to be used in
signal assignment and update. Alternatively, it could rely
on predefined shallow-copy for assignment, element-wise
comparison for equality, and no-operation for deallocation.
It is important to note that, if a class is instantiated as a sig-
nal, any operations that modify the encapsulated state can-
not be called directly by the user, since to do so would
violate the semantics of signals.

To illustrate how the class-based approach may be inte-
grated with signals, consider again the class-based for-
mulation of the complex-number type, shown in Section
2.1. A model might declare a variable and a signal of the
complex class:

variable x : complex;
signal s : complex;

It might update the variable:
v := complex(0.0, - 1.0);

This would involve invoking the “:=” procedure with v as
the implicit parameter. The model might make an assign-
ment to s in a process:

s <= reject 5 ns inertial c_zero after 20 ns,
c_1 after 50 ns;

The algorithm for signal assignment would be followed
as specified in the Language Reference Manual. During
transaction editing, the transactions after the time of the
first new one are deleted, involving invocation of the deal-
locate operation to delete the transaction values. Next, a
new transaction is created with the value initialized to de-
fault initial values. The “:=” operation is then invoked to
copy the first waveform value to the new transaction. Then
values of preceding transactions within the pulse rejection
interval are compared to the value of the new transaction
using the “=” function. Any that need to be deleted have
the deallocate procedure invoked on their values. Finally,
new transactions are created for waveform elements after
the first element. the values of the new transactions are in-
itialized to default initial values, and the “:=” procedure is
invoked for each one to copy the waveform value to the
transaction value.

When a signal needs to be updated, the effective value
is copied from the driving value transaction using the “:=”

procedure. The “=” function is invoked to determine if
there is an event. Any read of the signal is treated as a read
of the effective value. Since the state is encapsulated, the
only way to read a signal value is to invoke an operation on
the signal. The operation must not modify the state, since
that state is the effective value of the signal, and must only
be modified as a result of the signal update algorithm. An
example of a signal being used is:

process is
variable v : complex;

begin
wait until s /= c_zero;
x <= s + c_i;
y := s.real_part;
s.clear_to_zero; - - illegal!!
v.clear_to_zero; - - ok
...

end process;

The wait statement is sensitive to s, and waits until there
is an event on s as described above. The expression “s /=
c_zero”calls the “=”operator with s as the implicit param-
eter and c_zero as the actual parameter, then negates the
result. Simililarly, the expression “s + c_i” calls a “+”
function with s as the implicit parameter and c_i as the ac-
tual parameter. The expression s.real_part calls the
real_part function with s as its implicit parameter and no
other parameters. The procedure call s.clear_to_zero is
illegal, since the only way to update a signal should be
through signal assignment. Compare this with
v.clear_to_zero, which is acceptable, since a variable can
be updated immediately.

3.2 Using an abstract data type for signal objects

There are two aspects of integrating Ada-95 style ADTs
with signals. The first relates to the way that ADT values
are passed as parameters to the ADT operations. Since an
ADT may be instantiated as a variable or a signal, the op-
erations should be written to deal with both possibilities.
The simplest approach is to leave this to the ADT develop-
er. They simply include variants of each operation with pa-
rameters of the appropriate kind (variable or signal). This
is only relevant for operations which update the parameter.
Operations that only read the parameter value have a
constant parameter, which takes on the value of the actual
parameter, be it a variable or a signal object.

The second aspect of integrating Ada-95 style ADTs
with signals relates to signal assignment and update for sig-
nals of an abstract data type. Since the signal assignment
and update algorithms rely on assigning and comparing
values of the signal’s type, copy and equality operations
need to be defined. If the predefined operations are accept-
able, they could be used. Alternatively, if an overloaded
equality operator exists, it would be used. The Ada-95 ap-

proach does not provide for user-defined assignment, so if
shallow copy were inappropriate, the type should be limit-
ed and would not be allowed for signals. Since the usual
situation in which a type would be limited is if it contained
access types, it would not be an appropriate type for a signal
anyway, hence there is no loss of generality.

To illustrate how the programming by extension ap-
proach may be integrated with signals, consider again the
formulation of the complex-number type, shown in Section
2.2. A model might declare a variable and a signal of the
complex class:

variable x : complex;
signal s : complex;

It might update the variable:
v := make_complex(0.0, - 1.0);

The model might make an assignment to s in a process:
s <= reject 5 ns inertial c_zero after 20 ns, c_1 after 50
ns;

The algorithm for signal assignment would be followed as
specified in the Language Reference Manual. During
transaction edit, the transactions after the time of the first
new one are deleted. Next, a new transaction is created and
the predefined assignment operation is invoked to copy the
first waveform value to the new transaction. Then values
of preceding transactions within the pulse rejection inter-
val are compared to the value of the new transaction using
the “=”function to determine which need to be deleted. Fi-
nally, new transactions are created for waveform elements
after the first and the predefined assignment operation in-
voked for each one to copy the waveform value to the trans-
action value.

When a signal needs to be updated, the effective value
is copied from the driving value transaction using the as-
signment operation. The “=”function is invoked to deter-
mine if there is an event. Any read of the signal is treated
as a read of the effective value.

An example of a signal being used is:
process is

variable v : complex;
begin

wait until s /= c_zero;
x <= s + c_i;
y := real_part(s);
clear_to_zero(s);
clear_to_zero(v);
...

end process;

The wait statement is sensitive to s, and waits until there
is an event on s as described above. The expression “s /=
c_zero” calls the “=” operator with the values of s and
c_zero as the actual parameters, then negates the result.
Similarly, the expression “s + c_i”calls a “+”function with

the values of s and c_i as the actual parameters. The ex-
pression real_part(s) calls the real_part function with the
value of s as its actual parameter. The procedure call
clear_to_zero(s) invokes the clear_to_zero procedure
that has a signal parameter, and passes a reference to the
driver on s. The procedure uses signal assignment to
schedule a transaction on the driver. Compare this with
clear_to_zero(v), which invokes the clear_to_zero pro-
cedure that has a variable parameter. That procedure uses
variable assignment to update the variable.

3.3 Comparison of integration with signals

While both approaches can be integrated with signals, the
Ada-like approach does so more simply. The class-based
approach requires the restriction that the encapsulated state
be declared as one or more variables. For a signal object
of a given ADT, only operations that do not modify the
instance variables are allowed, since the variables repre-
sent the values in transactions and effective values of sig-
nals. To modify them would violate the semantics of signal
assignment. The only kind of operation where it is guaran-
teed that the instance variables are not modified is a pure
function. Hence, operations on signals would have to be
restricted to pure functions and signal assignment.

The Ada-style approach simply involves defining an
ADT that can be used for variables or signals. Operations
take values of the ADT type as parameters. For operations
that have out-mode parameters, two version are needed:
one for variables and one for signals. The current VHDL
rules for overload resolution imply that the two versions of
an operation must have different names. A minor exten-
sion, allowing the kind of parameter to be used in resolving
overloading, would result in allowing the two versions of
an operation to have the same name.

In both approaches, predefined assignment (shallow
copy) and equality (element-wise comparison) operations
can be used in the signal assignment and update algorithms.
If the concrete representation of an ADT includes access
values, the ADT should not be used for signals. Both ap-
proaches should include a means of indicating whether an
ADT includes access values, without exposing further de-
tails of the encapsulated type. If the predefined assignment
operation is inappropriate, a mechanism for preventing as-
signment of ADT values should be provided. (The Ada
limited type feature is such a mechanism.) The ADT can
include copy operations to be used instead. Such an ADT
should also not be used for signals.

3.4 Composite signal semantics
VHDL currently specifies that a signal that is of a compos-
ite type is equivalent to a collection of scalar signals. This
allows things like sub-element association, association of
a port with an element of a signal, and separate drivers for
separate sub-elements in separate processes.

If a signal is to be a class instance as described in Section
3.1, then the internal structure of the state is hidden within
the class. Thus, even though the signal may be composite,
that fact is not visible outside the class. Hence the signal
must effectively be treated as atomic (in the sense defined
by Dunlop [6]). This fits with the class-based scheme,
since the only way to assign to a signal is via the “:=”opera-
tion. Thus a process that assigns to a signal assigns to the
whole signal, and a process that is sensitive to a signal
senses the whole signal.

If a signal is to be of an abstract data type as described
in Section 3.2, then the internal structure of the type is hid-
den. Even though the signal may be composite, that fact
is not visible outside the defining package. Hence, subele-
ment association, and so on, may not be used. However, if
a subprogram defined in the package has a signal parameter
of the private type, that subprogram can see the structure
of the signal and can assign to subelements. Thus, the idea
of separate drivers for scalar subelements needs to be main-
tained in the semantics.

3.5 Resolved signals
VHDL currently supports user-defined resolution of multi-
ply-driven signals. The user defines an unconstrained
array type with elements of the signal’s type. During signal
update, the kernel creates an array of values collected from
drivers, calls the user-defined resolution function, and uses
the function result as the driving value for the signal.

If class-based ADTs are introduced as described above,
the problem of creating the vector of contributions arises.
This can be handled by having the kernel create an array of
class instances, then calling the assignment operation for
each element to copy a driver value to the vector. The ker-
nel then calls the resolution function, which must then re-
turn a class instance as its result. The kernel then invokes
the assignment operation again to copy the result to the
driving value of the signal. The resolution function written
by the user may need to invoke operations of the class to
compute its result. For example, a resolution function for
the complex class described above might be defined as:

type complex_vector is
array (natural range <>) of complex;

function resolve_complex (v : complex_vector)
return complex is

variable sum : complex := c_zero;
begin

for index in v’range loop
sum := sum + v(index);

end loop;
return sum;

end function resolve_complex;

signal s_r : resolve_complex complex;

No changes are required to the resolution mechanism if
ADTs are introduced using the programming by extension
approach. The predefined assignment and equality opera-
tions may be used during the resolution process. The reso-
lution function example for the complex number ADT is
the same as for the class-based approach.

3.6 Conversion functions in port maps

The existing rules for conversion functions can be applied
to conversion from a class type to some other non-class
type. The conversion function is defined with an explicit
parameter of the class type. For conversion from some
source type to a class type, a construction operation could
be used. For example:

function to_bit_vector_complex (c : in complex)
return bit_vector_complex;

component cmp is
port (bvc : in bit_vector_complex; r : out real; ...);

end component cmp;

signal cs1, cs2 : complex;

u1 : cmp
port map (bvc => to_bit_vector_complex(cs1),

complex(r) => cs2, ...);

Here, the conversion function to_bit_vector_complex
is invoked when a new effective value is calculated on cs1.
The function takes the effective value and returns a result
to be used as the effective value of the component port bvc.
When there is a new driving value of type real on the com-
ponent port r, a constructor that can be called with one real
actual parameter is called to determine the complex driving
value for the signal cs1.

Similarly, the existing rules can be applied to conver-
sion functions in the programming by extension approach.
The conversion function may be defined in the ADT pack-
age or separately. Only the port map need be modified in
the above example to use the make_complex function
rather than the complex constructor.

u1 : cmp
port map (bvc => to_bit_vector_complex(cs1),

make_complex(r) => cs2, ...);

4. Encapsulation
One of the main aspects of object-oriented data modeling
is the ability to define abstract data types (ADTs). This re-
quires encapsulating the concrete representation of an
ADT value and providing operations for manipulating the
value. The class approach uses a storage model for the en-
capsulated value. The concrete values of an object are de-
clared in the class declaration and are viewed as instance
variables by the operations. The particular object to be op-
erated upon is implicit within the body of the operation. In
the Ada-style approach, an ADT is defined as a type, en-
capsulated using the package feature of the language. A
type name is provided by a package to denote the abstract
type, and the concrete details of the type are made private
to the package. Operations are provided in the form of sub-
programs that take explicit parameters of the type.

VHDL currently has some of the features required for
Ada-style ADTs. It allows a type and operations on the type
to be declared in a package. The details of implementation
of the operations are hidden by being written in a separate
package body. What VHDL lacks is a feature for informa-
tion hiding: making the concrete details of the type invis-
ible to users of the package. Such a feature would have to
be added as an extension for VHDL to qualify as an object-
oriented language. (This is a necessary, but not sufficient
condition.) An appropriate path would be to extend the
analogy between VHDL and Ada packages, and add provi-
sion for private types and private parts in packages.

Both classes and Ada-style packages provide means for
declaring a set of related items. If classes were adopted in
VHDL, the language would have two features that provide
largely similar capabilities. The language would be sim-
pler if there were only one mechanism for grouping decla-
rations. Hence, the Ada-style features for defining ADTs
are prefered.

One remaining aspect in which class-based proposals
and VHDL packages extended with privacy features differ
is the places where an ADT may be declared. Class-based
proposals treat a class as an additional kind of type defini-
tion. Hence, a class can be declared in any declarative re-
gion and is thus local to that region. In Ada, a package can
likewise be declared in any declarative region. Hence, an
ADT in Ada can be made local to a particular region.
VHDL currently only allows a package to be declared as a
library unit, so an ADT declared using a VHDL package is
globally visible. Allowing packages to be declared in other
declarative regions, as in Ada, would avoid this limitation.

5. Initialization of objects
In both the class-based and the programming by extension
approaches, the rules for default initial values can be ex-
tended to the state encapsulated by an ADT. In the class-

based approach, each instance variable declared in a class
should take on the default initial value implied by its type.
Initialization expressions might be allowed, and inter-
preted as initial values to be used in place of the default ini-
tial values for the instance variable. Such initial values
effectively specify the default initial value for objects of
the class. This would make class types different from other
types, where there is no mechanism for specifying a default
initial value in the type. In the Ada-like approach, the de-
fault initial values follow from the current default initial
value rules for record types. The default initial value for
each element is implied by the element type. Thus, tagged
record types are no different from other types with respect
to initialization.

In some circumstances it may be desirable to define
constructors for initializing the value of an object. In the
class-based approach, a constructor could simply take the
form of an ordinary operation that assigns values to
instance variables. However, there are two problems with
this. First, a constant object could not be initialized with
such a constructor. Second, a signal could not be initialized
with such a constructor, since updating a signal using an op-
eration must not be allowed (for reasons discussed below).
Thus, a special form of constructor operation would be re-
quired, as described in Section 2.1.

In the Ada-like approach, a constructor need only be a
function that returns a value of the ADT. The function can
be called in the initialization expression for a constant,
variable or signal object. This is simpler, being based on
existing language mechanisms and not requiring special
cases.

6. Inheritance

Both the class-based and Ada-style approaches allow in-
heritance of ADT state and operations. In the class-based
approach, a child class is derived from a parent class by
identifying the parent class in the declaration of the child
class. The child class then inherits the instance variables
and the operations of the parent, and may add further
instance variables and operations and may override inher-
ited operations. In the Ada-style approach, a child tagged
record type is derived from a parent tagged record type and
extends the parent type by adding record elements. The
child type then inherits all of the primitive operations of the
parent type. If the child type is defined within a package,
additional primitive operations may be defined for the
child type, and primitive operations may be defined hiding
operations inherited from the parent type.

Both approaches allow definition of ADT operations
whose implementation is deferred to a descendent in the in-
heritance hierarchy (“pure virtual”, or “abstract”). Both

approaches also allow specification that an ADT is not to
be instantiated directly, but only used for inheritance.

In both approaches, an object can be of a class-wide
type, meaning that it can store a value of a nominated type
or any of its descendants. When an operation is invoked on
the object, the actual type of the object is used at run-time
to determine which operation to use (dynamic dispatch-
ing).

Whereas some class-based proposals allow multiple in-
heritance, the Ada-style approach only admits of single di-
rect inheritance. While multiple inheritance may have
some applications, its general necessity is still widely de-
bated. (As an illustration, although C++ includes multiple
inheritance, Java only includes single inheritance.) Fur-
thermore, allowing multiple inheritance requires complex
rules in the language to resolve conflicting inherited
instance variables and operations, and complicates imple-
mentation of the language. One use of multiple-inheri-
tance, container classes, can be addressed by “template”
(or generic) classes. Another use, mix-in inheritance, can
be addressed in the Ada-style approach by use of generic
ADT packages that have a tagged type as a formal generic
type parameter.

The comparison of inheritance capabilities of the two
approach leads to a preference for the Ada-style approach.
In most aspects, the two approaches provide similar capa-
bilities, provided inheritance is restricted to a single parent.
For multiple inheritance, the class-based approach would
require a general multiple inheritance mechanism with the
associated complexity and costs. The Ada-style approach,
however, provides a simpler mechanism for mix-in inheri-
tance, which is the most common form of multiple inheri-
tance.

Adopting the Ada-style of inheritance in VHDL would
require adopting the notions of derived types. It would be
beneficial to adopt the notion for all types, not just tagged
record types, since derived types are a generally useful
safety feature and can enhance the benefit of strong type
checking. In order to support specification of container
classes and mix-in inheritance, the generic mechanism of
VHDL should be extended to packages and subprograms,
and allow a wider range of formal generic parameter kinds
than just constants. Following the Ada model would be ap-
propriate. This extension of the generics mechanism
would be widely beneficial, as it would also allow generic
design entities whose port types could vary between
instances.

7. Conclusion
The comparison of the class-based approach and the pro-
gramming by extension approach to extending VHDL for
data modeling shows that both alternatives are viable.
However, there are a number of factors that lead to choos-

ing the programming by extension approach. That ap-
proach integrates more simply with mechanisms relating to
signals. It extends the existing encapsulation mechanism,
rahter than duplicating or replacing it. It provides a simpler
initialization mechanism. When integrated with generics,
it provides for simpler implementation of mix-in inheri-
tance. These factors all stem from the requirement that ex-
tensions must integrate well with existing language
mechanisms.

One final issue that leads to the Ada-like approach as the
preferred alternative is stylistic integration. VHDL already
borrows many features from Ada. Since the Ada style of
object-oriented data modeling is based on these features,
incorporating them in VHDL ensures that the extensions
are in keeping with the the existing style of VHDL. To
paraphrase the Ada 9X Rationale [3]: “The solution should
be conceptually consistent with existing [VHDL] program-
ming models. Intuitions about object, types, subprograms,
generic units, and so on should be preserved.”

References

[1] P. J. Ashenden and P. A. Wilsey, “Considerations on
Object-Oriented Extensions to VHDL,”Proceedings
of VHDL International Users Forum Spring 1997
Conference, Santa Clara, CA, pp. 109- 118, 1997.

[2] P. J. Ashenden and P. A. Wilsey, Principles for Lan-
guage Extension to VHDL to Support High-Level
Modeling, Dept. Computer Science, University of
Adelaide, Technical Report TR-03/97, ftp://ftp.cs.a-
delaide.edu.au/pub/VHDL/TR-principles.ps, 1997.

[3] J. Barnes, Ed. Ada 95 Rationale, vol. 1247. Berlin,
Germany: Springer-Verlag, 1997.

[4] G. Booch, Object-Oriented Analysis and Design with
Applications. Redwood City, CA: Benjamin/Cum-
mins, 1994.

[5] O. J. Dahl and K. Nygaard, “Simula: An Algol Based
Simulation Language,” Communications of the
ACM, vol. 9, no. 9, pp. 671- 678, 1966.

[6] D. D. Dunlop, VHDL Structure Varying Signals and
OO Extensions to the VHDL Type System. IEEE
DASC OO-VHDL Study Group, working paper,
ftp://vhdl.org/vi/oovhdl/papers/structure-varying-
signals.txt, 1995.

[7] A. Goldberg and D. Robson, Smalltalk-80: The Lan-
guage. Reading, MA: Addison-Wesley, 1989.

[8] J. Gosling, B. Joy, and G. L. Steele, The Java Lan-
guage Specification. Reading, MA: Addison-
Wesley, 1996.

[9] IEEE, Standard VHDL Language Reference Manual.
Standard 1076-1993, New York, NY: IEEE, 1993.

[10] ISO/IEC, Ada 95 Reference Manual. International
Standard ISO/IEC 8652:1995 (E), Berlin, Germany:
Springer-Verlag, 1995.

[11] M. T. Mills, Proposed Object Oriented Programming
(OOP) Enhancements to the Very High Speed Inte-
grated Circuits (VHSIC) Hardware Description Lan-
guage (VHDL), Wright Laboratory, Dayton, OH,
Tech. Report WL-TR-5025, 1993.

[12] H. Mössenböck, Object-Oriented Programming in
Oberon-2, 2nd ed. Berlin, Germany: Springer-Ver-
lag, 1995.

[13] M. Radetzki, W. Putzke, W. Nebel, S. Maginot, J.-M.
Bergé, and A.-M. Tagant, “VHDL Language Exten-
sions to Support Abstraction and Re-Use,”Proceed-
ings of Workshop on Libraries, Component
Modeling, and Quality Assurance, Toledo, Spain,
1997.

[14] G. Schumacher and W. Nebel, “Inheritance Concept
for Signals in Object-Oriented Extensions to
VHDL,” Proceedings of Euro-DAC ’95 with Euro-
VHDL ’95, Brighton, UK, pp. 428- 435, 1995.

[15] B. Stroustrup, The C++ Programming Language.
Reading, MA: Addison-Wesley, 1986.

[16] J. C. Willis, S. A. Bailey, and R. Newschutz, “A Pro-
posal for Minimally Extending VHDL to Achieve
Data Encapsulation Late Binding and Multiple In-
heritance,” Proceedings of VHDL International Us-
ers Forum Fall ’94 Conference, McLean, VA, pp.
5.31- 5.38, 1994.

