
 

April 1996

 

4-13

 

© 1996 Actel Corporation

 

Application Note

 

4

 

Designing with FPGAs 
Compared with PLD Devices

 

Field programmable gate arrays (FPGAs) are powerful
devices for implementing complex digital systems. FPGAs are
best used with an understanding of the key differences
between FPGAs and previous logic technologies. This
document focuses on FPGAs compared with programmable
logic devices (PLDs). Understanding these differences and
using design techniques appropriate for FPGAs results in 50
to 100 percent improvement in speed and density compared
with design styles that treat FPGAs and PLDs equally.

 

Comparing Technologies

 

PLDs are array-oriented devices that typically have an
AND-OR structure with wide-input AND gates feeding a
narrower OR gate. A register is typically available at the
output of each OR. This architecture is termed 

 

logic rich

 

because there are typically many more logic gates than
registers available. The ratio of gates to registers can be as
high as 5 to 1. Because of the large delay through the wider
logic module, PLDs pay a significant speed penalty when
multiple levels of logic are required. Speeds tend to be more
predictable in PLDs because of the larger 

 

speed quanta

 

.

FPGAs on the other hand, are register rich, with a
logic-to-register ratio closer to 2 to 1. (This ratio is equivalent
to the traditional gate array usage and tends to be related to
high density designs’ need for more registers than are needed
by the traditional “glue logic” oriented low-density
applications.) FPGA logic structures are optimized for
functions narrower than those of PLDs. FPGAs have a smaller
speed quanta than do PLDs, so logic functions can be
incremented in complexity while incrementing the delay only
a little each time. In addition, signals that need to be fast can
be sourced near the bottom of the logic tree, minimizing the
number of logic levels required, and slow signals can be
sourced at the top of the logic tree, where more logic levels
are required. 

 

Estimating PLD Logic Replacement

 

Estimating the number of logic modules needed to replace an
existing PLD is straightforward. Figures 1 shows an example
of a typical PLD file converted to Actel logic modules. Typical
PLD functions are address decoding and state machine
control. Figure 1 is a wide-register AND function decoding 25
inputs and using only 6 logic modules. Since the first AND5B
gate is combined with the DFC1B flip-flop in a sequential
module, the 25-bit decode is done in only one logic level. A

second level could be added to provide 32-bit decode with 8
modules or 64-bit decode with 16 modules.

Figure 2 is a familiar three-product term AND/OR array using
only four logic modules to implement a typical state machine
equation. Figure 3 shows the product and sum terms
expanded further. In the PLD equation examples, note how
easily the number of either product or sum terms can be
expanded. Small incremental changes in both delay and size
are added each time the array is enlarged. This is in sharp
contrast to the large step-function increase in delay and size
when a second PLD array must be used to implement a
particular equation.

PLD equation conversion shows the flexibility of the Actel
logic module, implementing a variety of different
combinatorial and sequential functions in few modules
without wasting dedicated resources. With ACT 2, 1200XL,
3200DX, and ACT 3 devices, the cost of using a sequential
function is equal to the cost of using a combinatorial
function. In contrast, PLDs are rich in AND/OR gating but
lacking in registers. Encoding states in a PLD requires using
the smallest number of flip-flops possible, but with Actel you
are free to use any combination of flip-flops and logic.

 

State Machine Techniques

 

The traditional PLD design techniques for implementing
state machines are geared toward the logic-rich and
register-lean architecture of the standard PLD. A small
number of state registers are used (usually the theoretical
minimum), since registers are scarce. This approach requires
a larger amount of combinatorial logic to decode the state,
but PLDs usually are able to provide enough combinatorial
logic to do this effectively. Using this technique for FPGAs
would not be an efficient use of FPGA strengths—numerous
registers and fast narrow logic gates. A bit-per-state
approach, whereby each state uses a separate register
instead of encoding states in multiple registers, results in
faster and more efficient state machines in FPGAs. (Refer to
the “Designing State Machines for FPGAs” application note
in this data book.) In many cases, speed improves by 50 to 100
percent compared with the PLD-oriented methodology of an
encoded state machine.

In PLD-oriented designs, logic is typically used to develop
outputs from state machines. Usually this requires an
additional level of logic after the state register and adds



 

4-14

 

delay. In FPGAs, this level of logic can be eliminated in many
cases by combining the logic in front of the state bits in which
an output is active. For example, if the chip enable (CE)
output from a state machine needs to be active in states 3 and
5, the logic feeding state bits 3 and 5 can be ORed together
and registered to create the CE output without incurring a
logic delay after the register. Since the logic in front of state
bits is simple, usually no additional delay or logic resources
are required in front of the new register.

Another popular state machine design technique for PLDs uses
counters to generate a sequence of wait states. For example, a
state machine may need to wait for 16 cycles until a data
transfer can begin. A 4-bit counter can be used to generate the
required state sequence. This is fairly efficient in PLD
architectures because of the logic-rich and register-lean
characteristics of the count function. It is not as good a fit for
FPGAs, however. In FPGAs, registers are rich, and a shift

register is more efficient and faster than a counter. A normal
shift register will require one register per wait state. If very
large delays are required, a feedback shift register can be used
to implement only one state fewer than a counter, but it
requires much less logic and is significantly faster.

Actel provides an automated tool (ACTgen Macro Builder) to
assist designers with the creation of counters, shift registers,
and feedback shift registers. These functions can be used to
augment state machine designs and simplify the design
process.

 

Conclusion

 

PLD designers can use FPGA technology to reap the benefits
of lower cost, smaller board size, and lower power. However,
using new techniques that are better suited for FPGAs will
allow between 50 and 100 percent improvement in
performance and capacity.

 

Figure 1 •

 

PLD Implementation with Wide Fan-In

Y

E

D

C

B

AND5B

A

Y

E

D

C

B

AND5B

A

Y

D

C

B

A

NAND5C

E

Y

E

D

C

B

AND5B

A

Y

D

C

B

A

NAND5C

E

Y

E

D

C

B

AND5B

A

Q

CLR

CLK

D

DFC1B



 

4-15

Designing with FPGAs Compared with PLD Devices

 

4

 

Figure 2 •

 

Implementing State Machine



 

4-16

 

Figure 3 •

 

Expanded State Machine


