

Application Note

Designing FIR Filters
with Actel FPGAs

Introduction

Many of the traditional users of HiRel silicon were early
adopters of digital signal processing (DSP) applications. In
the military-aerospace market, real-time DSP was needed for
processing radar and sonar signals. Programmable DSP chips
were not yet available, so the early adopters in this segment
employed discrete components, or

building blocks

 (ALUs,
multipliers, registers, etc.), to build their DSP data paths. The
development of programmable DSPs made building blocks
obsolete, except in cases of sample rates that exceeded the
capabilities of the programmable DSPs. In those cases,
building blocks could still be employed to perform much of
the required computation in parallel.

It is now possible to employ Actel’s high-gate-count FPGAs to
implement the high-sample-rate DSP applications required
by many users of HiRel silicon. Furthermore, Actel’s
synthesis-friendly architecture makes designing these
applications with HDLs (hardware description languages)
straightforward and predictable. A big advantage of using
HDLs is that the designs can be scalable or parameterizable
and can therefore be reused in different applications.

In this application note, two architectures for FIR (finite
impulse response) filters are described. The FIR filter is the
most common DSP application, and the techniques
illustrated in this application note should pertain to other
DSP applications as well. A brief note about Two’s
Complement Arithmetic precedes the discussion about the
filters. Schematics and block diagrams are used extensively
to illustrate some of the techniques. Some basic knowledge of
VHDL is assumed. The VHDL examples are used to illustrate
some of the more advanced techniques that may be unique to
DSP applications. Finally, some results for various
implementations of the filters are presented along with some
discussion about the use of the Actel tools.

Two’s Complement Arithmetic

In DSP filtering applications, coefficients are made up of both
positive and negative numbers. Depending on the
application, the data is either all positive or both positive and
negative. Two’s Complement arithmetic efficiently handles
the addition and multiplication of signed numbers.

In an n-bit Two’s Complement binary number, the MSB
(b

n-1

) represents –b

n-1

 * 2

n-1

.

The following are Two’s Complement representations of
various numbers:

-3 101 (-2

2

 + 2

0

) or 1101 (-2

3

 + 2

2

 + 2

0

)

 3 011 (2

1

 + 2

0

) or 0011 (2

1

 + 2

0

)

Notice that to go from a 3-bit representation to a 4-bit
representation of a given number, the MSB is simply
duplicated. This is called

sign extension

(Figure 1).

VHDL Example 1: Sign Extension Operator

The advantage of Two’s Complement arithmetic is that you
can use the same hardware to add negative numbers and
positive numbers. The carry-out is discarded.

0011 (3)

+ 1110 (-2)

0001 (1)

Note, in the following example, that you must sign extend the
two addends by one bit more than the MSB to assure that the
sum doesn’t overflow.

0011 (3) 011 (3)

+ 0011 (3) not + 011 (3)

0110 (6) 110 (-2)

-- The sxt operator takes two arguments. The
-- first is the vector being extended.
-- the second is the word length of the
-- result. <cr>
a(7 downto 0) <= sxt(“1100”, 8); <cr>
-- assigns “11111100” to signal <a>

Figure 1 •

Hardware Implemention of Sign Extension

A(2:0)

A(2) A(3)

A(2:0)

S(3:0)

B(3)B(2)

B(2:0) B(2:0)

Subtracting two numbers in Two’s Complement arithmetic is
carried out by taking the Two’s Complement of the
subtrahend and adding it to the minuend. In hardware, this
can be accomplished by inverting all the bits of subtrahend
and setting a carry-in to 1. A carry-in can be emulated by
adding an LSB to both the subtrahend and the minuend,
setting one of them to 1 and using the other as a carry-in
(Figure 2).

1101 (-3) 1101 1 (-3 and LSB set to 1)

– 0010 (2) is + 1101 1 (inverted 2 and carry-in
(LSB) set to 1)

1011 (–5 and discard the LSB)

In other words, the Two’s Complement of a given number is
equivalent to inverting all the bits and incrementing by 1. An
empirical method of taking the Two’s Complement of a
number is to invert every bit after the least signficant 1.

0011 (3) -> 1101 (-3)

0100 (4) -> 1100 (-4)

Distributed Arithmetic

The following is the equation of a T-tap FIR filter is:

where c

1

, c

2

, … c

T

 are the filter coefficients and d

1

, d

2

 … d

T

are sequentially stored input data values, or taps (Figure 3).

Figure 2 •

Schematic of a Two’s Complement Subtractor

A(3:0)
A(4:1)

A(0)

S(3:0)

B(4:1)

S(4:1)

B(3:0)
B(0)

S(0)

‘1’

‘1’

Dout cidi
i 1=

T

∑= (1)

Figure 3 •

Block Diagram for a Generalized T-Tap FIR Filter

Din

Tap1 Tap2

Dout

N N N

C1

W W W

C2

N

TapT

CT

N

d1 d2 dT

W

Designing FIR Filters with Actel FPGAs

As mentioned, adding some degree of parallelism to the FIR
calculation enables filtering applications to be carried out
with an FPGA at data rates higher than with a programmable
DSP. In the case of a FIR filter, the hardware required for
parallelism can be greatly minimized if the filter coefficients
are known and constant. If this is the case, multipliers can be
replaced by a combination of look-up tables and adders by
using the distributed arithmetic technique.

Partial products for each data bit are evaluated for four-tap
slices of the filter. If there are N data bits, there are N partial
products:

where d

1

(n) is the nth bit of d

1

, d

2

(n) is the nth bit of d

2

, etc.

Each equation can be implemented by the same hardware in
the form of a four-input look-up table (LUT). The input (D)
consists of the nth bit each of the four taps in the slice
(Figure 4).

A LUT of this nature synthesizes very efficiently in Actel’s
mux-based architecture. Most often, only one module is
required per bit of the result. At the most, two levels of logic
will be required.

p0 cndn 0()
n 1=

4

∑= (2-1)

p1 cndn 1()
n 1=

4

∑= (2-2)

pN 1– cndn N 1–()
n 1=

4

∑= (2-N)

D LUT Output
0000 0
0001 c1
0010 c2
0011 c2 + c1
0100 c3
 . .
1111 c4 + c3 + c2 + c1

Figure 4 •

Block Diagram for Partial Product Generation for a FIR Filter

d (0)1 d (N-1)1

Pn-1

d (0)2 d (N-1)2d (0)3 d (N-1)3

LUT

d (0)4 d (N-1)4

d1
N

d2
N

d3
N

d4
N

P0

W W

LUT

VHDL Example 2: LUT to Evaluate Partial Products for Four Taps

Entity PartialProd

c1 : std_logic_vector := “01001001”; -- coefficient for tap 1
c2 : std_logic_vector := “10010101”; -- coefficient for tap 2
c3 : std_logic_vector := “10010010”; -- coefficient for tap 3
c3 : std_logic_vector := “01101010”; -- coefficient for tap 4

Port (D : std_logic_vector(3 downto 0);
 P : std_logic_vector(9 downto 0)); -- 4 * 8 bit coeff => 10 bit product

End PartialProd;

Architecture Behave of PartialProd is

-- Compute all the partial products and store them as constants.

constant v0 : std_logic_vector := sxt(“0”, 10);
constant v1 : std_logic_vector := sxt(c1, 10);
constant v2 : std_logic_vector := sxt(c2, 10);
constant v3 : std_logic_vector := v1 + v2;
constant v4 : std_logic_vector := sxt(c3, 10);
constant v5 : std_logic_vector := v4 + v1;
constant v6 : std_logic_vector := v4 + v2;
constant v7 : std_logic_vector := v4 + v3;
constant v8 : std_logic_vector := sxt(c4, 10);
constant v9 : std_logic_vector := v8 + v1;
constant v10 : std_logic_vector := v8 + v2;
constant v11 : std_logic_vector := v8 + v3;
constant v12 : std_logic_vector := v8 + v4;
constant v13 : std_logic_vector := v8 + v5;
constant v14 : std_logic_vector := v8 + v6;
constant v15 : std_logic_vector := v8 + v7;

Begin

prodeval: process (D)
begin
case(d) is

when “0000” => P <= v0;
when “0001” => P <= v1;
when “0010” => P <= v2;
when “0011” => P <= v3;
when “0100” => P <= v4;
when “0101” => P <= v5;
when “0110” => P <= v6;
when “0111” => P <= v7;
when “1000” => P <= v8;
when “1001” => P <= v9;
when “1010” => P <= v10;
when “1011” => P <= v11;
when “1100” => P <= v12;
when “1101” => P <= v13;
when “1110” => P <= v14;
when “1111” => P <= v15;

end case;
end process;
end behave;

Designing FIR Filters with Actel FPGAs

Once the partial products are evaluated, they need to be
summed in a manner to produce the final filtered result for
the four-tap slice, P

out

.

In hardware, the scaling (multiplication by a power of 2) can
be accomplished in parallel or serially. In addition, recall that
Pout represents the scaled and summed partial products of a
four-tap slice. The partial product for the MSB (p

N–1

) is
subtracted from the total because it represents the partial
product for the MSB of the data (d

N-1

), which in turn
corresponds to –2

N-1

.

If the number of taps exceeds four, then those results must be
summed as well to generate the final filter output.

where P

out

(k) is the product of the kth four-tap slice.

Writing Parameterizable VHDL Code

FIR filters are inherently parameterizable. The basic
equation (1) is the same for all FIR filters. What differs are
parameters such as:

• Number of taps

• Word width of the data

• Word width of the coefficients

• Word width of the result

One can use VHDL Generics to Create the scalable or
parameterizable code. One creates a Generic for each of the
parameters in the top-level entity. These Generics are
initialized at the top level to the value desired. If these
parameters are needed in lower level entities, the initialized
value can be passed to the lower level entity by using a
Generic Map.

VHDL Example 3: Using Generics to Scale Buses

VHDL Example 4: Passing Parameters to Lower Level Entities Using Generics

pout 2
n

 p n ×

n

0=

N

2–

 ∑ 2
N

1–

 p N 1– ×() –= (3)

Dout Pout k()
k 1=

K

∑= (4)

Entity FIR

Generic (O_Width : integer := 10; -- word width of output
 D_Width : integer :=8); -- word width of data

-- Note that the ports are scaled to the values initialized for the Generics.

Port (Din : in std_logic_vector(D_Width - 1 downto 0); -- 7 downto 0
Dout : out std_logic_vector(O_Width - 1 downto 0); -- 9 downto 0

 Clk : in std_logic);

end FIR;

Entity AddOrSubtract is

-- In this example, a Generic is used to pass a control value to a lower level entity.
-- The value of the Generic will control what the lower-level entity does.

Generic(Subract : integer := 0); -- 0 to add, 1 to subtract …

Architecture Behave of AddOrSubtract is …

Begin …

add_sub1 : Add_Sub -- instantiate component “Add_Sub”
Generic Map (Subtract); -- passes value of Generic “Subtract” to component
Port Map (a => a, b => b, s => s); …

end Behave;

entity Add_Sub is

generic (Subtract : integer :=1); -- initialized value is overridden
-- by value passed from top level

The

Generate Statement

, in combination with

Generics

, is
used to create scalable hardware. In FIR filters, this is
especially useful for creating a register chain that is as long
as the number of taps.

In addition to components, the

Generate Statement

 can be
used in a similar manner to instantiate VHDL processes.

Finally,

Generics

 can be used as loop controls for processes.
This is a convenient way to generate scalable shift registers.

VHDL Example 5: Using Generics with a Generate Statement

VHDL Example 6: Using a Generic in a Loop

Parallel Summation Architecture for
FIR Filters

This implementation of a FIR filter employs adder trees to
evaluate the four-tap partial product slice in parallel.

Modifying our example to the case where N (the number of
partial products) is 8, Equation 3 can be implemented in an
adder tree with 3 (log

2

8) levels (Figure 5).

Having scaled and summed all the partial products for all of
the four-tap slices, a standard adder tree is used to produce
the final result (Figure 6).

Writing HDL code to implement the adder trees is
straightforward. One way to do this is to instantiate ACTgen
adders, which are optimized for performance. One can also
infer adders by using the HDL operator +. In some synthesis
tools (ACTmap and Synopsys), the synthesized result is
identical to the ACTgen result.

In many cases, the output of one level of adders must be
transformed before input to the next level of adders. These
cases include shifting the sum left to multiply by a power of 2,
sign extending a sum that is to be added to a shifted sum and
truncating a sum, to maintain a maximum internal precision
level. The easiest way to transform the sums is with

Concurrent Signal Assignment

 statements.

Architecture Behave of FIR is …

Begin …

taps : -- need a label for generate statement
for I in 1 to NumTap generate -- generic “NumTap” is ending value of loop

tapregx : TapReg -- instantiating component TapReg

Port Map (in <= tap(I - 1), -- assign signal tap(I-1) to input
out <= tap(I); -- assign signal tap(I) to output
clock <= clk); -- clock is assigned to clk in each instance

end generate;

process(clk)
begin
if (clk’event and clk=’1’) then

for I in RegLen downto 1 loop -- Generic “RegLen” is starting value of loop
regout(I) <= regout(I-1);

end loop;
end process;

Figure 5 •

Schematic of an Adder Tree Used to
Implement Equation 3 for N=8

44

2 2 2 2

-P7 P6 P5 P4 P3 P2 P1 P0

16

P (k)out

Designing FIR Filters with Actel FPGAs

VHDL Example 7: Multiplying a Sum by a Power of 2 and Sign Extending a Sum

Note that the size of the adder used in the truncate example
is (MaxPrec + 1). This is because once the maximum
precision has been reached, the output of the adder must be
one bit longer than the inputs to guarantee that there is no
overflow. The LSB of the sum is then truncated to maintain
the precision to MaxPrec.

Pipelining for Maximum Performance

The structure of a parallelized FIR filter lends itself naturally
to pipelining. Pipelining enables one to run the circuit at a
higher sample rate, at the cost of delaying the result by a
number of clock cycles. In most DSP applications, this delay
is not a problem. The natural pipelining stages include every
stage of the adder trees and the output of the look-up tables
used to generate the partial product terms. Creating these
pipeline stages using HDL code is trivial.

VHDL Example 8: Creating Pipeline Stages

Serial Summation Architecture for
FIR Filters

At the expense of a lower sample rate, the hardware required
to implement a FIR filter in an Actel part can be greatly
reduced by performing the partial product summation
serially. In the Parallel Summation architecture, the result
for a four-tap slice requires N look-up tables where N is the
word length of the data, and an adder tree to sum and scale
the N partial products. The Serial Summation architecture
takes advantage of the fact that each of the N look-up tables
is identical.

The first step to implement the Serial Summation
architecture is to serialize the data stream by using a simple
parallel-to-serial shift register. This is easily created by using
either ACTgen and instantiating it or by just coding it
directly.

The serialized data is then fed to a serial chain of T (number
of taps) N*1 serial shift registers (Figure 7). The LSB of each
of the T registers is then fed to the look-up tables used to
evaluate the partial products. In this manner, the partial
products (p

n

) for all of the taps are evaluated at one time for
a single data bit, starting with the LSB.

Next, all the partial products of the four-tap slices for bit n of
the data are summed in an adder tree (Figure 8). Equations 3
and 4 are thus combined to become the following:

where and, in turn,

-- multiply by 4 (shift left 2)
a3(7 downto 0) <= s1(5 downto 0), “00”;

-- sign extend
b3(7 downto 0) <= sxt(s2(5 downto 0), 8);

-- truncate by 1 bit
b4(MaxPrec downto 0) <= sxt(s3(MaxPrec downto 1),MaxPrec+1)

Figure 6 •

Adder Tree to Sum the Partial Products of the
four-tap Slices

P (1)out

Pout

P (2)out P (k)out

W W W

-- for an adder tree stage
process(clk)
begin
if (clk’event and clk=’1’) then

s <= a + b;
end if;
end process;

Dout 2
n

 P n ×

n

0=

N

1–

 ∑ = (5)

Pn pn k()
k 1=

K

∑=

where p

n

(k) is the partial product for the nth data pit of the
kth four-tap slice.

The sum P

n

 is then fed to a scaling accumulator.

The scaling accumulator shifts its output right by one bit
before feeding back, effectively multiplying the input by 2
(Figure 9). The structure here requires additional circuitry to
subtract P

N–1

 and to reset the accumulator without losing a
clock cycle. The LSB of the result can be stored in an overflow
register to increase the precision of the output.

Therefore, in the Serial Summation architecture, N clock
cycles are required per sample. As with the Parallel
Summation architecture, it lends itself to pipelining.

Using the DX Dual-Port SRAM as a
Serial Register

FIR filters consume a large number of registers (N bits *
T taps). This is particularly onerous in any FPGA architecture
because the logic in front of the flip-flops is wasted. The
dual-port RAM in the 3200DX family can be used in place of
registers for shifting the data, freeing up the other flip-flops
for pipelining and other applications.

A DX RAM block is 32 * 8 . If it is used as a serial register in a
FIR filter, it can store eight taps, which can contain word
lengths up to 32 bits. After the n

th

 word of the t

th

 tap is read,
it is written to the n

th

 word of the (t+1)

th

 tap. The read
address can therefore be controlled by a counter that counts
to N-1. To generate the write address, the read address is
simply delayed by one clock cycle.

The basic synchronous DX RAM block can be generated using
ACTgen and then instantiated in the HDL code.

 Symmetric and Antisymmetric Filters
In most cases, filter coefficients have symmetry (Figure 11
and Figure 12), and if they do, hardware requirements can be
greatly reduced by adding (subtracting in the antisymmetric
case) the two symmetric taps together before evaluating the
partial product, reducing by half the number of look-up tables
and adder trees.

Figure 7 •

Register Chain for Serial Summation
Architecture

Figure 8 •

Scaling Accumulator

Din

d1(n) d2(n) dT T(n)

N Bits N Bits N Bits

N

p (1)n

Pn

p (2)n

d1(n) d4(n)

LUT LUT

W W

W

W W

W

W

p (K)n

LUT

W

Figure 9 •

Scaling Accumulator

Reset

B(W:1) A(W:1)B(0)

S0S(W:1)

S(W:0)

Pn

Subtract

A(0)

‘1’

Dout

W

W

Designing FIR Filters with Actel FPGAs

In the Parallel Summation architecture, the addition is
straightforward for the symmetric case. One way to handle
the anti-symmetric case is to pass the data through a Two’s
Complementer at the point of symmetry (after tap T/2 if T is
even, and after tap (T+1)/2 if T is odd).

In the Serial Summation architecture, a serial adder is fairly
straightforward to implement (Figure 13) but it has the effect
of adding an extra clock cycle per sample because adding two
N-bit numbers yields an (N+1) bit result. (Note in Figure 13
that the Actel macro FA1A is instantiated. This is to
guarantee a minimum delay.) The data register must
therefore halt for a cycle when the MSB is being process by
the serial adder, effectively sign extending the data. For the
antisymmetric case, a serial Two’s Complementer can be
used at the point of symmetry. This can apply the empirical
Two’s Complement algorithm, which is to invert every bit
after the least significant 1 (Figure 14).

Figure 10 •

The Dual-Port RAM Used as a Serial Register

Figure 11 •

Symmetric Coefficients

Figure 12 •

Anti-symmetric Coefficients

WAddr

RAddr

WData (0)

WData (7:1)

Data in

RData (0:6)

Tap (t: t+6)

Tap (t+7)

Ram Block

RData (7:0)
Data out

Coefficient

21 T

Tap

1 2
T

Tap

Coefficient

Figure 13 • Serial Adder

Figure 14 • Serial Two’s Complementer

A

B
S

CI CO

Reset

FA1A

D

E

CLR Reset

‘1’

Controlling the Serial Summation
Architecture

There are several control signals required for the Serial
Summation architecture. They include the Raddr and Waddr
of the RAM, the reset for the serial adder, and the reset and
subtract for the scaling accumulator. Designing the data path
for the filter is fairly straightforward. The control logic is
usually the most time consuming.

In general, a counter will be needed to generate the
addresses. The rest of the control signals can be generated by
a state machine that uses the counter as input. Here are a few
guidelines that may ease the design of the control circuitry:

• Put all control circuitry, except for the counter in a
lower-level entity. Use the counter as an input to the
control block and all the control signals as the output
(Figure 15).

• Inside the control block, feed all of the control signal into
a scalable pipeline register. The length of the register
should be passed into the block as a Generic and will be
dependent on the number of pipeline stages in the filter,
which is generally dependent on the number of levels in
the adder trees. Reference each control signal to the
Generic that is passed. In this way, if the number of
pipeline stages changes, one only has to change the value
of the Generic in the top level, and not the control logic.

VHDL Example 9: Pipelining Control Signals

Generating Results

Once the scalable code has been created, producing FIR
filters with different parameters is straightforward. One
simply needs to import the synthesized netlist into the Actel
tools and run Place & Route. If the filter sample rate is
known, just enter the period in the DirectTime Editor and run
Place & Route using the DirectTime option. Timing problems
are also straightforward to sort out for the filter using the
DirectTime Analyze tool. In general, the Serial Summation
architecture is limited by the scaling accumulator, which
requires one additional level of logic more than an adder of
the same size. At times, some of the control signals will also
be limiting because they have to be distributed throughout
the array. If necessary, results can be improved for the
control signals by adjusting the synthesis timing parameters.
The Parallel Summation architecture is balanced and will
probably be limited by one of the adders.

Table 1 shows some of the results that can be achieved for
several embodiments of both the Parallel Summation
architecture and the Serial Summation architecture. As a
point of reference, today’s state-of-the-art programmable
DSPs run at about 10ns per tap (i.e., 10 Tap filter => 10 MHz
sample rate).

Conclusions

Using the techniques described in this application note, one
can efficiently design parameterizable FIR filters that can
perform at sample rates greatly exceeding those of a
state-of-the-art programmable DSP. These techniques
include the following:

• Employing Two’s Complement arithmetic for any
application using both positive and negative integers

Figure 15 • Block Diagram of the Control Logic

RAddr
WAddr
P/S(0 to N-1)

5

Ser_Add
Scal_Accum

CtrlCntr

-- Concatenate all the control signals together to create a control bus.
ctrl(0) <= acc_sub & acc_rst & ser_add_rst & cntr_en & par_ser_ld;

process(clk)
begin
if (clk’event and clk=’1’) then

for I in stages downto 1 loop -- Generic “stages” starts loop
ctrl(I) <= ctrl(I+1);

end loop;
end process;

acc_sub_out <= ctrl(stages)(4); -- accumulator signals depend on Generic “stages”
acc_rst_out <= ctrl(stages)(3);
ser_add_out <= ctrl(3)(2); -- last 3 signals have fixed location wrt to beginning
cntr_en_out <= ctrl(2)(1);
par_ser_ld <= ctrl(1)(0);

Designing FIR Filters with Actel FPGAs

• If coefficients are known, synthesizing LUTs and adder
trees in place of multipliers to conserve valuable logic
resources

• Trading off performance of a DSP algorithm with
utilization by altering the degree of parallelism in the data
path

• Pipelining a DSP datapath

• Parameterizing FIR filters in VHDL by using Generics and
the Generate statement

• Employing the Dual Port RAM in the 3200DX devices in a
Serial Summation architecture as the data registers

• Further reducing logic resources by taking advantage of
symmetry in the coefficients

• Implementing with the straightforward and predictable
Actel tools.

With these capabilities, a DSP application that, in the past,
may have been implemented with building blocks can now be
integrated onto a single Actel FPGA. The FPGA solution
offers complete flexibility in the design and, by reducing chip
count, improves the overall reliability of the system.

Table 1 • FIR Filter Results

Max
Precision

(W)

Utilization Sample Rate (MHz)

Taps
(T)

DataWidth
(N) Architecture Part S Mods

Total
Mods

–3 WC
Comm –1 WC Mil

32 8 12 Serial A32200DX 138 275 5.6 3.9

32 12 12 Serial A32200DX 222 486 3.7 2.6

64 8 16 Serial A32200DX 450 968 5.6 3.9

64 12 12 Serial A32200DX 408 872 3.5 2.4

8 8 10 Parallel A14100A 227 505 66 46.5

8 8 17 Parallel A14100A 268 565 67.6 47.6

16 8 10 Parallel A14100A 451 997 66.2 46.6

Actel and the Actel logo are registered trademarks of Actel Corporation.

All other trademarks are the property of their owners.

http://www.actel.com

Actel Eur ope Ltd.
Daneshill House, Lutyens Close
Basingstoke, Hampshire RG24 8AG
United Kingdom
Tel: +44(0).1256.305600
Fax: +44(0).1256.355420

Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
USA
Tel: 408.739.1010
Fax: 408.739.1540

Actel Japan
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ka
Tokyo 150 Japan
Tel: +81.(0)3445.7671
Fax: +81.(0)3445.7668

5192645 0

