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Abstract

We present a case study on the design of a heterogeneous archi-
tecture for MPEG-2 video decoding. The primary objective of the
case study is the validation of the SPADE methodology for archi-
tecture exploration. The case study demonstrates that this method-
ology provides a structured approach to the efficient evaluation of
the performance of candidate architectures for selected benchmark
applications. We learned that the MPEG-2 decoder can conve-
niently be modeled as a Kahn Process Network using a simple API.
Abstract models of architectures can be constructed efficiently us-
ing a library of generic building blocks. A trace driven simulation
technique enables the use of these abstract models for performance
analysis with correct handling of data dependent behavior. We per-
formed a design space exploration to derive how the performance
of the decoder depends on the busload and the frame rate.

1 Introduction and Objectives

In this paper we focus on the design of heterogeneous systems ar-
chitectures for complex programmable systems. A methodology is
needed that supports the definition of aheterogeneous architecture,
i.e. an architecture consisting of both programmable and dedicated
components, starting from aset of benchmark applications. For a
broad class of applications this methodology must support the ef-
ficient exploration of candidate architectures based onquantitative
evaluationof the performanceof these architectures for selected
benchmark applications.

We are developing such a methodology under the nameSpade
(System level Performance Analysis and Design space Exploration).
SPADE aims to support efficient architecture exploration by permit-
ting architectures to be modeled at anabstract level. We felt that
early feedback on this new methodology was essential for the fur-
ther development of concepts and tools. For example, does the
designer get relevant data on the performance of proposed archi-
tectures, can simulations be performed efficiently, etc. Therefore,
we decided to perform an industrially relevant case study with the
newly developed prototype tools. We selected an ATSC compliant
MPEG-2 video decoder as benchmark application. MPEG-2 video
decoding is a high performance signal processing application that
exhibits dynamic, scene dependent behavior. For this application

we had to propose an architecture and to evaluate the performance
of the application on the proposed architecture, including an anal-
ysis of the sensitivity to various design parameters. The objectives
of the case study were to validate the basic principles of the SPADE
methodology and to verify the prototype tools and the library of
architecture building blocks that comes with the tools.

In the next section we briefly summarize the SPADE methodol-
ogy. The case study is presented in sections 3 to 7. We summarize
the lessons that we have learned in section 8. Related work is pre-
sented in section 9 and conclusions are presented in section 10.

2 The Spade Methodology

The SPADE methodology makes a clear distinction betweenappli-
cationsandarchitectures. An application defines aworkloadthat is
to be executed by theresourcesof an architecture. SPADE offers a
simple Application Programmers Interface (API) to model applica-
tions as Kahn Process Networks [1], possibly starting from avail-
able C-programs. The main purpose of the application modeling
step is to expose the parallelism and communication in the appli-
cation. The Kahn Process Networks can subsequently be executed
stand-alone in order to determine the (data dependent) computa-
tion and communication workloads. Architectures can be modeled
at an abstract level using generic building blocks from a library.
The building blocks may represent processing resources, such as
programmable cores or dedicated hardware units, communication
resources, such as bus structures, and memory resources, such as
RAMs or FIFO buffers. The application models can subsequently
bemappedonto the architecture models in order to evaluate theper-
formanceof the different application–architecture combinations.
The SPADE flow is depicted in Figure 1.
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Figure 1: The SPADE flow for executing the case study.

3 The MPEG-2 Video Decoder Application

The SPADE methodology aims to facilitate the use of existing ap-
plication code. In particular, it permitsapplication modelingto



start from a functionally correct sequential C-program of the ap-
plication. The modeling of the MPEG-2 video decoder application
started from a C-program that had originally been derived from the
MPEG decoder software from UC Berkeley. This C-code was to
be turned into a set of parallel communicating processes according
to the Kahn Process Networks model [1]. In Kahn Process Net-
works, parallel processes communicate via unbounded FIFO chan-
nels. Each process executes sequentially. Reading from channels
is blocking; writing to channels is non-blocking. The Kahn model
is timeless; there is only an ordering on the data in each channel.

SPADE offers a simple API that can be used to turn a sequen-
tial C-program into a Kahn Process Network. The API contains
the functionsread, write, and execute. With the read and write
functions, data can be read from or written to channels via process
ports. The read and write calls correspond to thecommunication
workloadof a process. The execute function can be used to instru-
ment the application code withsymbolic instructionsthat identify
the computation workload. This function itself performs no data
processing. Figure 2 shows an example of an application modeled
as a Kahn Process Network.
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Figure 2: Application modeled as Kahn Process Network. Pro-
cesses are depicted as circles; small circles represent process ports;
the circle segments in the processes represent the use of API func-
tions.

The following code fragment illustrates the use of the API.

while(1) {
Input->read(token);
ProcessToken(&token);
Process->execute(PROCESSTOKEN);
Output->write(token, size);

}

The code fragment shows an infinite process that repeatedly reads a
token from its input port, processes the token, and sends the result
to its output port. Each time a token is processed, this is signaled
via the execute call.

The API has been implemented on top of a multi-threading
package. Upon execution of the application model, each process
runs as a separate thread. Processes synchronize via the read and
write operations on the FIFO channels. These operations have been
implemented with the help of semaphores, which synchronize the
underlying threads.

The modeling of the MPEG-2 video decoder application started
with the specification of the processes that may run in parallel as
well as the specification of the types of the tokens that are commu-
nicated by these processes. Thus, during this functional partition-
ing phase we decided on the grain sizes of the processes as well as
on the grain sizes of the tokens that get communicated by the pro-
cesses. For example, we decided to have a process Tvld that parses
an MPEG bit-stream under control of a process Thdr. The Thdr pro-
cess is aware of the high level bitstream organization and distributes
the retrieved sequence and picture properties to other processes.
The Tvld process parses picture data autonomously. It sends mac-
roblock headers into a functional pipeline that retrieves the predic-
tion data for the reconstruction of macroblocks. The coefficient

data for the error blocks is sent into a second functional pipeline
for inverse scan, inverse quantization, and IDCT. The grain size for
this coefficient data is a macroblock. A memory manager process
TmemMan was introduced to control the access to the frame mem-
ories. It takes care that a frame is used for prediction or display
only after it has been reconstructed completely. Thus, we see that
during the parallelization of the application, control processes may
appear that explicitly synchronize the operation of other processes.

During the actual coding, the sequential C-code of the decoder
was split up into processes and the communication among the pro-
cesses was made explicit by instrumenting the C-code with read
and write calls. The parallelization of the C-code required sev-
eral global data structures to be removed. Next, execute calls were
added to be able to monitor the computation workload. The Kahn
Process Network is shown in Figure 3.
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Figure 3: MPEG-2 video decoder modeled as Kahn Process Net-
work.

The application model could now readily be used to analyze the
workload of MPEG-2 video decoding for different MPEG streams.
Upon execution of the model with a particular MPEG stream, the
Kahn API reports:

� For each process: which symbolic instruction is invoked how
often by the process.

� For each channel: how many tokens of which size(s) are
transferred over the channel.

The results of such aworkload analysisare presented in the form
of two tables, as exemplified by the tables below:

Process Instruction Frequency

Tidct IDCT MB 12514
Tadd SkippedMB 158
Tadd Intra MB 2037
... ... ...

Channel #Tokens #Bytes

predictdata 88218 5645952
predictmv 12514 400448
... ... ...

4 MPEG Decoder Architecture

In addition to the application model, we had to define anarchitec-
ture modelonto which the application model could be mapped. See
the flow in Figure 1. The SPADE methodology is intended for top-
down design of heterogeneous architectures and must permit effi-
cient evaluation of a range of candidate architectures. For this case
study, we decided to start from a single, but parameterized, archi-
tecture specification in order to validate that this architecture could
be evaluated correctly, conveniently, and efficiently with SPADE.
The parameterization would then allow us to do sensitivity analysis
and some design space exploration for this architecture.

For the case study to be useful, we wanted to exercise a realistic
architecture for MPEG-2 video decoding. For this we selected the
TM-2000 MPEG decoder architecture from the Philips TriMedia
Group, for which an internal databook level specification is avail-
able. The TM-2000 consists of a dedicated MPEG decoder attached
to a bus structure together with a VLIW CPU and several other ded-
icated co-processors. The parts of the architecture specification that
are relevant to MPEG decoding are depicted in Figure 4.
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Figure 4: MPEG-2 video decoder architecture.

In this architecture the VLD unit parses an MPEG stream un-
der control of the CPU. The MPEG stream may have been stored
in Main Memory by the Video-In unit. The VLD alternately pro-
duces a Macro Block Header (MBH) for the MVU and Run Length
symbols with coefficient data for the data driven Iscan / IQ / IDCT
pipeline. The MVU drives the PFU to fetch prediction data from
memory. The PRU combines the prediction data with the IDCT
output and passes it to the SU in order to be stored in Main Mem-
ory. The Video-Out unit may subsequently retrieve the data from
Main Memory. The CPU synchronizes the operation of the Video-
In, VLD, SU and Video-Out units. A relevant question for this ar-
chitecture is whether the latency of the Iscan / IQ / IDCT pipeline
is properly balanced with the latency of the prefetching of the pre-
diction data.

A methodology for architecture exploration must allow archi-
tecture models to be defined quickly and conveniently. SPADEaims
to facilitate the construction of architecture models by offering a li-
brary ofgeneric architecture building blocksfrom which architec-
ture models can be composed. These building blocks are generic
in that they arenon-functionalblocks that can be used to model a
broad class of programmable or dedicated components. Upon ex-
ecution, the blocks account for the consumption oftime without
processing any real data. This is further explained in section 6.

The generic building block approach is enabled by thetrace
driven simulation techniqueemployed by SPADE. With this tech-
nique the application model is executed on top of the architecture
model, to actually drive the architecture model withdata-dependent
traces. As a consequence, abstract non-functional architecture mod-
els, built from the generic building blocks, can be used for per-
formance analysis of architectures running data dependent appli-
cations. The traces transfer information on communication and
computation operations performed by the application processes.
Specifically, a trace contains an entry for each read, write or ex-
ecute call performed by an application process. The principle of
trace driven simulation in SPADE is illustrated in Figure 5.

An architecture model is composed from the building blocks.
This modeling involves the definition of a netlist and requires no
additional programming. In SPADE, a processor, be it programma-
ble or dedicated, is modeled by a singletrace driven execution unit

trace
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C
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X Y
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Figure 5: Trace driven simulation: the execution of the architec-
ture model is driven by traces from the execution of the application
model.

surrounded byinterface blocksthat are specific for the selected
form(s) of communication (e.g. communication over a dedicated
link or via a shared bus). Upon instantiation of the building blocks,
parameter values can be assigned. For example, for the interface
blocks the number of buffers and their sizes can be specified. A
small example architecture model is depicted in Figure 6.
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Figure 6: Small example architecture model. The model consists
of two processors (the dashed boxes), that are each composed of a
trace driven execution unit and two interface blocks, and a bus.

For each instantiated processor a repertoire ofsymbolic instruc-
tionsand associatedlatency valuesmust be specified. An applica-
tion process can be mapped onto a processor only if the processor
can execute all symbolic instructions that may be issued by the ap-
plication process. A specified latency value represents the time that
the processor needs to execute the fragment of the application that
has been annotated with the corresponding symbolic instruction.
These latency values may be retrieved from databooks, may be es-
timated by expert designers, or may be obtained via off-line com-
pilation, simulation or synthesis activities. For example, one may
run a code fragment through a compiler to determine the latency
associated with the execution of that code fragment on a particular
embedded processor core.

For the MPEG case study, we obtained the latency values for
most of the symbolic instructions from the databook. For the other
symbolic instructions we defined ranges of latency values that we
wanted to explore. Remember that the objective of this work was to
validate the SPADE methodology and not to validate the TM-2000
MPEG decoder design.

5 Mapping

The next step was to define a mapping from the application model
(Figure 3) onto the architecture model. Each process from the
application model is mapped onto a processor in the architecture
model. Process ports from the application model are mapped onto
the processor ports to the interface blocks. The mapping of the pro-
cess ports determines the mapping of the channels onto the commu-
nication structures in the architecture.



For the MPEG case the mapping is rather straightforward. The
process Tinput is mapped to Video-In and the process Toutput is
mapped to Video-Out. Both Thdr and TmemMan are mapped to the
CPU. The remaining processes are mapped one-to-one onto proces-
sors in the dedicated MPEG decoder.

SPADE does not require all channels of an application model to
be mapped. In general, if a channel imposes only a small commu-
nication workload and does not relate to relevant synchronization
delays at the architectural level, then the mapping of this channel
may be omitted without a serious effect on the performance mea-
surements. For the application model of Figure 3, we concluded
for most of the channels that carry sequence or picture properties
that the above condition was satisfied. Hence, these channels were
not mapped. The remaining channels impose a significant commu-
nication workload or contribute to relevant synchronization among
processors, and hence were mapped.

6 Performance Analysis

Performance analysis in SPADE is based on the combinedsimu-
lation of an application model and an architecture model, using a
trace driven simulation technique. The traces generated by the ap-
plication model are interpreted by the trace driven execution units
in the architecture model. When such an execution unit gets aread
or awrite entry from the trace, it sends the corresponding request
to an interface and waits for the acknowledge, after which it reads a
next trace entry. Between the request and the acknowledge a num-
ber of cycles may pass, depending on the interface and synchro-
nization. For example, a dynamic communication delay may occur
depending on the availability of a bus and the available room in
buffers. When an execution unit gets asymbolic instructionfrom
the trace, it looks up the corresponding latency and waits this num-
ber of cycles before reading a next trace entry. So, both commu-
nication and computation consume time in the simulation of an ar-
chitecture model.

The generic building blocks have been equipped with measure-
ment facilities to provide information on their performance behav-
ior. They report on suchmetricsas processor utilization, stall times
on processor ports, bus utilization, bus access delays, etc.

7 Design Space Exploration

SPADE has further been integrated with a DSE environment that
supports design space exploration (DSE) by automatically perform-
ing multiple simulations at different points in the design space.
From the acquired simulation data this environment builds piece-
wise linear models that show how selected performance metrics
depend on parameter values, such as latencies of architecture com-
ponents, when these parameters are varied in a range. We have
used this DSE environment to perform asensitivity analysisin a
multi-dimensional parameter space for the unspecified latencies of
architecture components. The outcome of this DSE were thecycle
budgetsfor the respective processors based upon an evaluation of
the overall system behavior.

A prerequisite for such design space explorations is simulation
speed. The combined simulation of application model and archi-
tecture model for the MPEG case runs at a speed of a video frame
per minute. This permits individual simulation runs to be done as
needed, while larger explorations can be run overnight.

We also studied the ability of the architecture to meet the dead-
lines for frame decoding in relation to the frame rate and some
additional bus load. The additional bus load was generated by an
extra processor that periodically claims the bus. Figures 7 and 8
show a measure for the missed deadlines as a function of the frame
period (in cycles at 200 MHz) and the period of the bus requests of

the additional processor. The flat part of the figure is the part where
all deadlines are met; for a high bus load (small period) and for a
high frame rate deadlines are missed.

Figure 7: Measure for missed deadlines as function of frame pe-
riod and period between bus requests of an additional processor.
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Figure 8: Measure for missed deadlines as function of frame pe-
riod, for bus load period 115.

8 Lessons Learned

In this section we draw some conclusions with respect to the SPADE
methodology, based on the case study that we have performed.

� The Kahn Process Networks model has proven to be an ef-
fective model for structuring the MPEG-2 video decoder ap-
plication. We were able to start from existing C-code. The
simple API is easy to use and supports workload analysis of
the structured application. The process-based Kahn model
supported by a multi-threading implementation offers a sig-
nificant advantage over pure ”fire-and-exit” dataflow models.
A read call can simply be embedded in the C-code. Upon ex-
ecution, the read call makes the thread block till data arrives
on the process port and then returns the received data. The
control flow of the C-code remains intact and no explicit ac-
tion has to be taken to save the state of the process. This
turned out to be particularly advantageous when coding the
Tvld process of the MPEG decoder, which exhibits a lot of
conditional behavior and would require a lot of state informa-
tion to be administered if it were to be split into atomically
firing functions.

� SPADE is an example of a Y-chart methodology; the design
of heterogeneous architectures with SPADE follows a gen-



eral scheme, named the Y-chart by Kienhuis et al. [2]. This
scheme is also presented in [3]. See Figure 9.
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Figure 9: The Y-chart: a general scheme for the design of hetero-
geneous architectures.

The MPEG case study has shown that the decoupling of ap-
plication modeling and architecture modeling, as instructed
by the Y-chart scheme, is feasible, given that the application
model is sufficiently fine-grain. This decoupling provides
the flexibility for efficient evaluation of different application–
architecture combinations. Further, we have demonstrated
that a trace driven simulation technique can be used to exe-
cute an application model on top of an abstract architecture
model in order to evaluate the performance of an application–
architecture combination.

� The decoupling of application modeling and architecture mod-
eling permits design projects to be organized more effec-
tively. Application modeling can focus on deriving a Kahn
model, which provides a clear deliverable for downstream
activities. This (reusable) model provides statistics on the
workload that the architecture must handle. In parallel, archi-
tecture modeling can start. Coordination among these par-
allel activities is required mainly to ensure that application
models are sufficiently fine-grain with respect to architecture
models.

� The trace driven simulation technique permits the use of ab-
stract non-functional architecture models for performance a-
nalysis of architectures running data dependent applications.
Such architecture models can be constructed efficiently from
generic building blocks from a library. These blocks can be
equipped with performance monitoring facilities to provide
valuable feedback to the design engineer. As a result, archi-
tecture exploration becomes less laborious.

� Application and architecture models need to bevalidatedin
order to obtain reliable and accurate performance numbers.
The application model was functionally validated by running
MPEG compliancy tests using an available regression test
suite of MPEG streams and decoder output. The architec-
ture building blocks were validated by building small exam-
ple architectures for which the execution could be monitored
on a cycle by cycle basis. By relying on a library of vali-
dated building blocks, SPADE significantly simplifies the of-
ten time-consuming task of architecture model validation.

9 Related Work

Several system level architecture simulation frameworks have been
developed. The Scenic framework [4] allows a designer to use
C++ to model and simulate mixed hardware-software systems. TSS
(Tool for System Simulation) [5] is the Philips in-house architec-
ture modeling and simulation framework. In TSS an architecture is
a network of interconnectedmodules, which are modeled using C.

In [6] a performance simulation approach for MPEG audio/video
decoder architectures is presented. This approach is based on build-
ing ’process-oriented’ simulation models in C++. In contrast to
SPADE, where architecture models can be composed from generic
library blocks, these approaches require dedicated C/C++ models
to be constructed for a specific architecture. In case there is data
dependent behavior involved, these C/C++ models must be func-
tional models in order to permit accurate performance evaluation.
Building such models is laborious, and the reusability is low.

In [2] a Y-chart methodology for quantitative analysis of archi-
tectures is presented that uses abstract architecture models. How-
ever, architectures that can be analyzed with this environment are
restricted to a specific class of dataflow architectures.

In [7] an architecture workbench for multicomputer systems is
presented, named Mermaid. Mermaid also makes a clear distinc-
tion between the applications and architectures, in order to be able
to do performance evaluation of a wide range of architectural de-
sign options. Mermaid also employs a trace driven simulation tech-
nique. In contrast to SPADE, architecture modeling in Mermaid is
not based on a library concept.

10 Conclusion

The MPEG-2 decoder case study demonstrates that the SPADEmeth-
odology has unique characteristics that enable the efficient explo-
ration of heterogeneous architectures. These characteristics are
summarized in section 8. Further work will focus on a design tra-
jectory that supports gradual refinement of architectures starting
from abstract models. This will include support for multi-level sim-
ulation, to permit identified bottlenecks to be simulated at a more
detailed level while other parts of the architecture are still simulated
efficiently at an abstract level.
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